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How Will the Need to Adapt to Climate Change Affect
Energy Systems?

I Energy is one of the human systems most directly exposed to weather

I With rising ambient temperatures, individuals’ demand for thermal comfort/firms’ demand for a
stable thermal environment will increase demand for cooling during hot seasons, and reduce demand
for heating during cold seasons, and amplify demands for irrigation during crop growing seasons

I What is the range of net impacts that we can expect these opposing forces to have on regional and
global energy use?

I To assess the risks to energy systems we must confront two uncertainties:

(a) On the decadal time-scales of climatic change, what is the character of the future “baseline”
energy system—determined by the non-climatic forces of population and GDP growth, shifts in
sectoral composition, and the pace of energy-saving technological progress?

(b) What temperature stresses will the future baseline energy system be exposed to—globally,
driven by radiative forcing scenarios, and regionally in different realizations of the climate
simulated by earth system models (ESMs)?

I Integrated assessment models (IAMs) are increasingly being tasked with projecting climate change
effects on energy demand, supply and prices, and associated welfare impacts, yet IAMs’ energy
system responses to temperature change are often based on engineering relationships of questionable
empirical provenance.

I Ultimate goal is to integrate empirical representations of climate change impacts into IAMs,
leveraging statistically estimated reduced-form responses of impact endpoints to meteorological
exposures as a computationally efficient complement to process-based simulation models.
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Analytical Approach
Empirical modeling of the responses of energy demand to income and weather extremes (De Cian and Sue
Wing, 2019)

I We estimate the per-capita demand for three fuels (electricity, petroleum, natural gas) by five sectors
(agriculture, industry, commerce, households, transportation) across tropical and temperate countries
as a function of per capita GDP and exposure to days with extreme high (>27.5◦C) and low
(<12.5◦C) average temperatures.

I Two main data sources: cross-section/time-series records of fuel consumption for 90+ countries over
39 years from IEA, matched to population-weighted 0.25◦ gridded 3-hr temperature and humidity
fields from GDLAS-2 reanalysis.

I The model’s key feature is its ability to statistically distinguish between short-run (interannual
covariation, attributed to weather) and long-run (equilibrium, attributed to climate) responses. Panel
regression of energy consumption (Q) response to temperature (T ) for ` locations and t periods,
controlling for X temporally/geographically observables and (possibly location specific) trends γ(t):

∆Q`,t =
∑

b µb∆Tb,`,t + ∆X`,tν + α` + $
{
Q`,t−1 −

∑
b ζbTb,`,t−1 − X`,t−1χ

}
+ w`,t (1)

Projection of baseline energy use and temperature change circa 2050
I To characterize (a) we combine estimated long-run income elasticities with projected 2010-2050

growth in per capita GDP and gridded population for 183 countries taken from the Shared
Socioeconomic Pathway (SSP) scenarios.

I To characterize (b) we combine estimated long-run temperature elasticities with projected 2050-2010
change in hot and cold days for the RCP 4.5 and 8.5 climate scenarios, using 0.25◦ gridded
realizations of daily mean temperature simulated by 21 CMIP5 ESMs from NASA NEX Global Daily
Downscaled Projections.

I Superimposing the changes (a) and (b) yields mid-century projections of the future increases in the
demand for energy with and without climate change.
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2050 Baseline
A D. 2010-2050 baseline energy demand growth (2010=1)

SSP1 SSP2 SSP3 SSP4 SSP5

Europe 2.0 1.8 1.4 1.8 2.5
North America 2.0 1.8 1.5 1.9 2.6
Oceania 2.4 2.2 1.6 2.2 3.1
South America 2.3 2.1 2.0 2.0 2.7
Middle East & Africa 3.0 2.8 2.6 2.7 3.7
Asia 3.3 2.7 2.2 2.6 3.9
World 2.5 2.2 1.9 2.2 3.1

B E

C F

2010 SSP1 SSP2 SSP3 SSP4 SSP5 2010 historical 2050, RCP8.5

Population (A), Per Capita Income (B), Total Energy Consumption (C,D), and Hot and Cold Days (E,F)
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Global Energy Consumption Exposure to Temperature
Changes Circa 2050

All models Multi-model mean, all SSPs
SSP 5 Baseline (solid) and climate change amplification (dashed)

A RCP8.5 B E F

C RCP4.5 D G H

Geographic pattern of 2010 historical energy use exposed to 2050 warming

Geographic pattern of 2050 baseline energy use exposed to 2050 warming 2010 SSP1 SSP2 SSP3 SSP4 SSP5

Geographic pattern of 2050 baseline energy use, with climate amplification
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Median Fuel × Sector Global Impacts: RCP 8.5

I Previous studies have emphasized beneficial impacts on residential sector, due to reductions in
heating fuel demand (oil, natural gas) that occur in mid/high latitudes where high income, high
energy consumption countries dominate the global energy mix.

I Our results highlight the additional important roles of the service, industrial and transportation
sectors. Industrial and tertiary increases in the demand for electricity, especially in the tropics, are a
key driver of global impact.

I Error bars indicate the 95% CI of impacts across ESMs. Worst-case amplification of demand in
industry and services substantially exacerbates impacts on the global energy system.

I By constrast, impacts are much less sensitive to differences in socioeconomic futures.
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Geographic Hotspots of Energy Demand Impact Risk

< 0% > 0%

< -10% > 10%

< -15% > 25%

< -50% > 50%

0 21 0 21

Decrease Increase

Number of earth system models projecting energy demand change
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Energy Demand Change Relative to 2050 Baseline
SSP1 SSP2 SSP3 SSP4 SSP5

A. RCP8.5 (%)∗

Europe -2 -2 -1 -2 -3

[-5,1] [-4,3] [-3,6] [-4,3] [-6,-1]

North America 34 34 34 34 33

[28,44] [29,44] [29,44] [28,44] [27,43]

Oceania 14 15 15 14 14

[10,21] [10,21] [10,22] [9,21] [9,20]

South America 30 31 33 32 28

[24,45] [25,48] [27,52] [25,49] [22,43]

Middle East & Africa 28 29 29 29 28

[23,41] [23,42] [23,41] [23,40] [22,40]

Asia 33 34 36 34 31

[20,47] [22,50] [24,53] [22,50] [19,45]

World 24 25 26 24 22

[19,35] [20,37] [21,38] [19,36] [18,33]

B. RCP4.5 (%)∗

Europe -5 -4 -3 -4 -5

[-5,-4] [-5,-3] [-4,-3] [-5,-3] [-6,-5]

North America 17 17 17 17 16

[12,25] [12,25] [12,25] [12,24] [12,24]

Oceania 4 5 5 4 4

[3,7] [3,7] [4,7] [3,7] [3,6]

South America 15 16 18 17 15

[13,22] [14,23] [15,25] [14,23] [13,21]

Middle East & Africa 17 17 17 17 16

[13,19] [13,19] [13,19] [13,19] [12,18]

Asia 17 18 20 18 16

[11,24] [13,25] [14,26] [12,25] [10,22]

World 13 13 14 13 12

[9,17] [10,18] [10,19] [9,18] [8,16]

∗ Multi-model median, inter-quartile range in square braces.
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Why SSPs Matter: The Distribution of Impact Exposure
by Adaptation Capacity Determines Welfare Cost

High adaptation challenges Moderate adaptation challenges Low adaptation challenges
(Lower-middle income) (Upper-middle income) (High income) 11 / 40
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Recapitulation
I Adaptation to higher temperatures induced by climate change will increase the demand

for energy globally and in most regions.
I A key insight of our explicit consideration of uncertainty is that as early as mid-century

we quantify potential energy conservation benefits of climate change mitigation. The
densities of the RCP 4.5 and RCP 8.5 impact distributions diverge, with a statistically
significant 14-20% difference in means.

I However, associated costs depend critically on the uncertain greenhouse gas intensity of
electricity generation that satisfies anticipated increases in future demand.

I Adapting to an uncertain climate poses a monumental challenge to energy supply and
infrastructure development planning: for RCP 8.5 (RCP 4.5), worst-case amplification of
total final energy demand is 90% (28%) globally, and, across regions, 160% (45%),
concentrated in Asia. These figures dwarf the uncertainties in percentage and absolute
impacts due to compositional differences in countries energy systems under the various
SSPs.

I Our projections generate a large database of 0.25◦ gridded fields of fuel × sector energy
demand shocks circa mid-century for 10 combinations of RCP and SSP scenarios × 21
ESMs. Shocks denominated in percentage terms are explicitly designed to be
representative of broad sectoral groupings, flexibly aggregated across regions, and linked
to techno-economic model scenarios via the SSPs. We anticipate this will catalyze
downstream IAM and energy-system model investigation of the technology and
economic consequences of impacts. This is the focus of research in progress, using
analytical and computational general equilibrium economic models, as well as
techno-economic simulations.
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Climate-Change Impacts on Electricity Demand:
The Extensive Margin

Technology Adoption as Climate Adaptation:
Evidence from US Air Conditioning

Erin Mansur1 and Ian Sue Wing2

1Tuck School of Business, Dartmouth College
1Dept. of Earth & Environment, Boston University
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Extensive Margin Adaptation to Heat: AC Adoption and Utilization
I As the climate warms, a crucial but poorly understood pathway of energy system impact is the

effect of temperature changes on economic actors’ incentives to adapt by investing in space
conditioning capital—especially air conditioners (AC), and, simultaneously, shifting their energy
consumption by adjusting their utilization of heating/cooling capital stocks.

I A key concern is that warming will hasten the penetration of AC in developing countries,
particularly those in the tropics where extreme high temperature exposures are projected to
increase substantially by 2050, and thereby induce large increases in consumption of electricity,
fossil fuels, and GHGs.

I Assessing the risk of a positive feedback from adaptation to warming necessitates rigorous
empirical modeling of the joint decisions to adopt AC and consume electricity to maintain
thermal comfort—but it is rare to find situations in which the joint decisions are observed.
1960, ’70 and ’80 waves of the US Census provide a rare opportunity!

I What were the forces driving the historical penetration of residential air AC technology in the US?
I How much of the pattern of households’ AC adoption is explained by climate shocks, and in what

ways?
I What consequences did AC penetration have for residential electricity demand?
I What do the answers to these questions portend for the impacts of future climate change on the

extensive margin?

I Implications: How wrong are the results I just showed???
I What does US historical experience suggest might be the effects of climate change on AC

adoption as an adaptation to climate warming—especially in developing countries in the tropics?
I Conditional on the resulting aggregate penetration, how much amplification of residential

electricity demand is likely?
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A Strong Latitudinal (Climatic) Gradient to Historical AC Adoption
In the first 4 decades of AC use in the US, penetration was primarily driven by factors other than
temperature—income, education and electricity prices in the commercial sector (Biddle, 2011), and
regulatory policy regarding public housing that helped create markets for residential AC (Ackermann, 2002).

1960

1970

Fraction of reporting households with any AC (one or more central or window systems) in 253 SMSAs, 1960 and 1970 Censuses.
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Gentle Increase in Cooling Degree Days With Climate Change
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Lines: 10-year moving average annual CDDs Points: current-year annual CDDs
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AC Has Penetrated Most Rapidly in Hot Regions

Panel A Panel B

.2

.4

.6

.8

1

1974 1980 1985 1990 1995 2000 2005 2010 2015
Year

South
Midwest
Northeast
West

DOE/EIA Residential Energy Consumption Survey, various years Annual Housing Survey/American Housing Survey, national sample

US Aggregate AC Share
1960 1970 1980
12.6% 35.8% 58.5%

US Census of Housing (Biddle, 2008)
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Energy Demand as Intensive Margin Climate Adaptation
Panel regression of energy consumption (Q) response to temperature (T ) for ` locations and t periods, controlling for X
temporally/geographically observables and (possibly location specific) trends γ(t):

Q`,t =
∑

b β
Q
b Tb,`,t + X`,tλ

Q + αQ
`

+ γQ (t) + u`,t (2)

I Semi-parametric: weather shocks discretized into b intervals with average temperature Tb and associated coefficient

vector β̂
Q

whose elements trace out the potentially nonlinear response.

I Exogeneity of T , temporal invariance of unobserved shocks jointly affecting Q and X⇒ β̂
Q

= average within
response across locations to weather shocks. Impact of marginal change in the distribution of weather relative to

expectation = impact of analogous marginal change in the climate⇒ β̂
Q

identifies climate response.
I FE approach accounts for unobservable differences in locations, eliminating potential omitted variable bias

contaminating cross-sectional regressions. Omitted variable bias still problematic if there are time-varying factors that
affect Q and are correlated over time with T or X after conditioning on γ(t) (Hsiang, 2016).

I Location-specific levels/shifts of heating and cooling capital are a confounder: a key driver of Q almost never directly
observed in demand studies, correlated with T and observables (e.g., income, energy prices), lags of Q ⇒ true
climate response not identified!

I Few studies using fine temporal/spatial scale observations of Q in low-income countries, particularly in the tropics (De
Cian and Sue Wing, 2019; Auffhammer and Mansur, 2014)

Impact metric Locations Time step

Eskeland and Mideksa (2010) Final electricity use European countries Annual
Deschenes and Greenstone (2011) Total energy US states Annual
Auffhammer and Aroonruengsawat (2011) Hhold electricity use California zip codes Monthly
Auffhammer et al (2017) Electric load US load balancing authorities Hourly
Wenz et al (2017) Electric load European countries Hourly
De Cian et al (2013)a 3 fuels OECD countries Annual
De Cian and Sue Wing (2019)a 3 fuels × 5 sectors Countries Annual

a In contrast to the static model (2), these studies employ dynamic error-correction models that distinguish between long- and short-run responses.
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Response of Durables Adoption to Weather Shocks

Panel regression of AC stock (K) response to temperature:

ϑ(K`,t) =
∑

b

∑
ω β

K
b Tb,`,t−ω + X`,tλ

K + αK
` + γK (t) + v`,t (3)

I Biddle (2008) employs a pooled regression specification that does not include city FEs.

I Current and lagged temperatures (ω) capture the fact that durable stock adjustments depend on
climate, i.e., expected weather exposures over a long period (Auffhammer, 2014).

Impact metric ϑ(K) Locations Time step
Sailor (2003)a AC penetration K US Census regions Annual
McNeil and Letschert (2008)a AC penetration K US Census regions Annual
Biddle (2008) Hhold AC adoption K US cities Annual

Auffhammer (2014)b AC penetration ln
(
κ
K − 1

)
Chinese provinces Annual

Auffhammer and Wolfram (2014)b,c Appliance penetration ln
(
κ
K − 1

)
Chinese provinces Annual

Rapson (2014)d Hhold AC adoption Pr(K) US Census regions Annual

a Engineering studies that use a nonlinear cross-sectional specification with no controls.
b κ is an exogenously-imposed parameter determining the shape of the diffusion S-curve.
c Weather covariates are not included.

d Different from the reduced form specification (3), Rapson estimates a full structural dynamic discrete choice model of AC purchases that accounts

for cost of cooling households’ floor-space given annual CDDs.
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Approaches to Understanding Extensive Margin Adaptation
Stratify energy demand responses according to climate (Auffhammer, 2017)

Using observations of individual households (`(j) is the location at which j resides), model demand using first-stage FE
regression with locationally-varying responses to contemporaneous temperature shocks:

Qj,t =
∑

b

∑
` β

Q
b,`

Tb,`(j),t + Xj,tλ
Q + αQ

`(j)
+ γQ (t) + u`,t (4a)

Then model responses as a function of long-run zonal climate (T̃ ) in second-stage OLS regression:

β̂
Q
b,` = η0 + η1T̃b,` + X̃zη2 + vb,` (4b)

Caveats: Households’ AC adoption still unobserved, even long-run controls X̃ (e.g., population density in hot vs cold climates)
are potentially endogenous, η1 does not explicitly identify extensive margin.

Stratify energy demand responses according to AC penetration (Davis and Gertler, 2015)

Model penetration in the first stage using (3), then model demand in the second stage with responses stratified according to
dummy variables indicating d levels of penetration—Id = 1 if Pr(K 6= 0) ∈ [πd , πd ]:

Qj,t =
∑

b

∑
d β

Q
b,d

(
Tb,`(j),t × Id,`(j),t

)
+ X`(j),tλ

Q + αQ
j + γ(t) + vQ

j,t (5)

Caveats: Although (3) cleanly facilitates projection of future AC penetration, shifts in the indicators, and potential demand
amplification, no correction is made for endogeneity of Id in the second stage, only a single cross-section of data available to
run the first-stage regression, different first- and second-stage samples mean individuals are assigned the average AC
penetration rate of their location.

Combine (3) and (2) in a Dubin-McFadden discrete-continuous selection framework (Barreca et al, 2016)

Using household observations, model AC adoption using a first-stage logit analogue of (3), from which a selection correction
term (Φ) is calculated and enters as an additional covariate in the second-stage regression (2):

Qj =
∑

b β
Q
b Tb,`(j) + ξΦj + Xjλ

Q + αQ

`(j)
+ uj (6)

Caveats: Implemented on a single cross-section of microdata, as opposed to repeat cross-sections, or a panel. 20 / 40
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Our Approach: Long Differences (after Burke and Emerick, 2016)
Fundamental challenge: model energy demand as a function of climate while also recognizing unobserved
heterogeneity of locations. We measure adaptation to a changing climate and contemporaneous weather.

Estimate AC penetration for county i and decade t:

ACsharei,t = f (DD i,t ;β
K ) + Xi,tλ

K + α
K
i + γ

K
t + ui,t (7)

where

f (DD i,t ;β) = β1CDD i,t + β2CDD
2
i,t + β3HDD i,t + β4HDD

2
i,t

Estimate adoption and electricity demand amplification for household j and decade t:

ACj,t = δACshares(j),t−1 + f (DDs(j),t ;β
K ) + f (DDs(j),t ; θ

K ) + Xj,tλ
K + α

K
s(j) + γ

K
t + uj,t (8a)

ln Qj,t = ηACj,t + f (ACj,t × DDs(j),t ;φ
Q) + f (ACj,t × DDs(j),t ;ψ

Q)

+ f (DDs(j),t ;β
Q) + f (DDs(j),t ; θ

Q) + Xj,tλ
Q + α

Q
s(j) + γ

Q
t + vj,t (8b)

I ACshare = share of households in county i or SMSA s with air conditioning of any kind
I AC = dummy indicating whether household j has air conditioning of any kind
I Q = annual houshold electricity consumption (MWh)
I DD = {HDD,CDD} prior decade average annual heating and cooling degree days (climate)
I DD = {HDD,CDD} contemporaneous annual heating and cooling degree days (weather)
I X = demographic and house characteristics
I s(j) = indicates individual j is resident in SMSA s
I Eq. (7) estimated by weighted least squares using county population weights
I Instrument for AC in eq. (8b) using SMSA lagged adoption
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Data Sources

Households with air conditioning

County aggregate sample

I 1970 and 1980 Decennial Census waves, aggregated by county

I Number of households with central AC, one or more room ACs or no AC

I Demographics: population size, race, income, telephone adoption, vehicles available

I Home characteristics: age, size (number of rooms)

Household sample

I 1970 5% metro and 1980 1% Decennial Census public use microsamples

I Does a household have central AC, one or more room ACs, or no AC

I Annual electricity cost

I Demographics: household size, race, income, telephone adoption, vehicles available

I Home characteristics: age, size (number of rooms)

Weather shocks

I 0.25◦ gridded 3-hourly temperature fields from reanalysis data (NASA Global Land Data Assimilation
System—GLDAS-2), aggregated to annual heating and cooling degree days (65◦F base)

I Key explanatory variable: HDDs and CDDs at county/SMSA centroids, averaged over the decade
prior to each Census wave
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Summary Statistics of Main Variables

Panel A Panel B

All Counties
Variables 1970 1980

Percent Households with Any AC 0.321 0.521
(0.214) (0.255)

Ave CDD Previous Decade 1.003 1.085
(0.804) (0.848)

Ave HDD Previous Decade 4.973 4.762
(1.948) (2.064)

Current CDD 1.090 1.242
(0.789) (0.923)

Current HDD 4.967 4.895
(1.966) (2.103)

1 automobile 0.477 0.353
(0.065) (0.054)

2 automobiles 0.295 0.341
(0.088) (0.073)

3 or more automobiles 0.056 0.177
(0.023) (0.064)

Share Hhld Inc 10k-15k 0.225 0.154
(0.053) (0.025)

Share Hhld Inc 15k-25k 0.131 0.266
(0.059) (0.027)

Share Hhld Income >25k 0.038 0.288
(0.025) (0.095)

Observations 3,042 3,047

Households in MSAs
Variables 1970 1980

Air Conditioning 0.349 0.597
(0.477) (0.491)

Ave CDD Previous Decade 0.857 1.080
(0.792) (0.930)

Ave HDD Previous Decade 5.127 4.721
(1.708) (2.005)

Current CDD 0.933 1.217
(0.780) (0.987)

Current HDD 5.103 4.851
(1.723) (2.078)

1 automobile 0.499 0.446
(0.500) (0.497)

2 automobiles 0.171 0.328
(0.376) (0.470)

3 or more automobiles 0.021 0.095
(0.145) (0.293)

Income per Capita (10k) 2.476 2.873
(2.403) (2.402)

Telephone 0.833 0.952
(0.373) (0.214)

MSA Lagged Adoption 0.168 0.396
(0.112) (0.199)

MWh 5.471 8.917
(4.177) (6.903)

Observations 117,054 2,529,073

Note: degree days in thousand ◦F
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AC Adoption: Counties (Census)

Variables (1) (2) (3) (4) (5) (6) (7)

Ave CDD Previous Decade 0.247 0.536*** 0.666*** 0.610*** 0.333 0.741*** 0.501***
(0.154) (0.163) (0.173) (0.172) (0.377) (0.102) (0.067)

Ave CDD Previous Decade Squared -0.031 -0.071** -0.087*** -0.077** -0.044 -0.105*** -0.077***
(0.029) (0.030) (0.034) (0.033) (0.068) (0.019) (0.016)

Ave HDD Previous Decade -0.538*** -0.306*** -0.220** -0.232** -0.268 0.104**
(0.105) (0.099) (0.094) (0.094) (0.213) (0.050)

Ave HDD Previous Decade Squared 0.049*** 0.017** 0.009 0.010 0.011 -0.003
(0.009) (0.008) (0.008) (0.008) (0.020) (0.003)

Demographics N Y Y Y Y Y Y
House Age N N Y Y Y Y Y
Durables N N N Y Y Y Y
Sample All All All All MSA MSA MSA
Fixed Effects County County County County County MSA MSA

Observations 6,089 6,089 6,089 6,089 1,401 1,401 1,401
R-squared 0.968 0.978 0.980 0.980 0.989 0.959 0.957

*** p<0.01, ** p<0.05, * p<0.1
Weighted Least Squares by households. Standard errors clustered by FIPS or MSA-year

Demographic controls include number of rooms in structure, fraction of households that are white, and income. All regressions include an indicator for
1980. Other durables include telephone availability and number of automobiles available (1, 2 or ≥ 3). House age is a vector of dummies.

1 S.D. increase in cooling degree days ⇒ 45-49% increase in AC penetration!
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AC Adoption: Household Sample (IPUMS)

Sailor (2003) (39 cities) This study (253 cities)

’000 ◦F-day
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AC Adoption: IPUMS—Linear Probability Model

Dependent variable: AC = 0 or 1

Variables All Window 2+ Windows Central

Ave CDD Previous Decade 0.872*** 0.694*** 0.651*** 0.280
(0.193) (0.195) (0.228) (0.228)

Ave CDD Previous Decade Squared -0.143*** -0.109*** -0.075* -0.060
(0.035) (0.036) (0.043) (0.040)

Current CDD -0.078 -0.067 0.166 -0.027
(0.096) (0.084) (0.126) (0.094)

Current CDD Squared 0.014 0.034 0.002 0.017
(0.025) (0.025) (0.029) (0.024)

MSA Lagged Adoption 0.175*** 0.162*** 0.212*** 0.568***
(0.055) (0.049) (0.072) (0.063)

log Window AC Price -0.449*** -0.217 -0.144 -0.503***
(0.159) (0.209) (0.220) (0.081)

log Electricity Price -0.001 0.001 0.052 0.013
(0.024) (0.019) (0.044) (0.043)

Income per Capita (10k) 0.032*** 0.024*** 0.029*** 0.033***
(0.003) (0.003) (0.004) (0.002)

Income per Capita Squared -0.001*** -0.001*** -0.001*** -0.001***
(0.000) (0.000) (0.000) (0.000)

Indicator for 1980 0.035 0.003 -0.028 -0.027
(0.032) (0.036) (0.038) (0.021)

Observations 3,168,046 1,970,445 1,684,997 2,270,706
R-squared (All variables) 0.3275 0.1600 0.2530 0.5025
R-squared (Climate & FE only) 0.2161 0.1047 0.1588 0.3284
R-squared (FE only) 0.2074 0.1012 0.1529 0.3153

*** p<0.01, ** p<0.05, * p<0.1
Standard errors clustered by MSA-year

Controls include dummies for number of persons in household, number of rooms in structure and whether respondent (head of household) is white.
Other durables include telephone availability and number of automobiles available (1, 2 or ≥ 3). House age is a vector of dummies.
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Electricity Demand: IPUMS—IV Approach

Dependent variable: ln Q (MWh)

Variables All Window 2+ Windows Central

Air Conditioning -1.651 -1.907 -1.957 0.073
(1.181) (1.613) (1.476) (0.301)

AC * Current CDD 0.588** 0.692* 0.533* -0.083
(0.259) (0.353) (0.301) (0.257)

Current CDD 0.745*** 0.922*** 1.640** 0.313
(0.233) (0.236) (0.708) (0.476)

Current CDD Squared -0.260** -0.206*** -0.309** 0.091
(0.113) (0.076) (0.156) (0.232)

Current HDD 0.079 0.068 0.159 0.084
(0.091) (0.063) (0.106) (0.070)

log Electricity Price 0.164 0.208 0.216 0.193
(0.154) (0.179) (0.142) (0.165)

Income per Capita (10k) 0.057* 0.042 0.077 0.049
(0.031) (0.033) (0.056) (0.037)

Income per Capita Squared -0.001 -0.001 -0.002 -0.001
(0.001) (0.002) (0.002) (0.001)

Indicator for 1980 0.504*** 0.359*** 0.416*** 0.482**
(0.154) (0.097) (0.113) (0.232)

Observations 2,646,127 1,598,865 1,363,637 1,875,815

*** p<0.01, ** p<0.05, * p<0.1
Standard errors clustered by MSA-year

All regressions controls for number of persons in household, number of rooms in structure, house age, whether respondent (head of household) is
white, telephone availability and number of automobiles available.
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AC Adoption: Heterogeneity

Dependent variable: Any AC = 0 or 1

(1) (2) (3) (4)
All Renters Low Income New Building

Ave CDD Previous Decade 0.872*** 0.378** 0.463** 0.331
(0.193) (0.185) (0.226) (0.432)

Ave CDD Previous Decade Squared -0.143*** -0.066* -0.090** -0.080
(0.035) (0.035) (0.039) (0.068)

Current CDD -0.078 0.011 -0.036 -0.408**
(0.096) (0.100) (0.100) (0.171)

Current CDD Squared 0.014 0.015 0.025 0.072*
(0.025) (0.027) (0.027) (0.037)

MSA Lagged Adoption 0.175*** 0.236*** 0.358*** -0.035
(0.055) (0.049) (0.049) (0.082)

log Window AC Price -0.449*** -0.495*** -0.512** -0.792***
(0.159) (0.185) (0.223) (0.165)

log Electricity Price -0.001 0.022 -0.029 -0.035
(0.024) (0.024) (0.028) (0.050)

Income per Capita (10k) 0.032*** 0.037*** -0.020*** 0.019***
(0.003) (0.005) (0.005) (0.002)

Income per Capita Squared -0.001*** -0.001*** 0.036*** -0.001***
(0.000) (0.000) (0.004) (0.000)

Indicator for 1980 0.035 0.001 -0.011 -0.010
(0.032) (0.036) (0.043) (0.034)

Observations 3,168,046 1,231,989 942,606 371,880
R-squared 0.3275 0.3692 0.3020 0.3689

*** p<0.01, ** p<0.05, * p<0.1
Standard errors clustered by MSA-year
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Electricity Demand: Heterogeneity

Dependent variable: ln Q (MWh)

(1) (2) (3) (4)
All Renters Low Income New Building

Air Conditioning -1.651 -1.573 -1.168 -0.198
(1.181) (1.278) (0.836) (0.885)

AC * Current CDD 0.588** 0.721** 0.528** 1.002*
(0.259) (0.329) (0.208) (0.561)

Current CDD 0.745*** 0.849*** 0.882*** 0.442
(0.233) (0.249) (0.253) (0.625)

Current CDD Squared -0.260** -0.278** -0.244*** -0.287*
(0.113) (0.120) (0.093) (0.152)

Current HDD 0.079 0.062 0.078 0.352*
(0.091) (0.082) (0.058) (0.200)

log Electricity Price 0.164 0.311** 0.145 0.135
(0.154) (0.152) (0.169) (0.199)

Income per Capita (10k) 0.057* 0.045 -0.084*** 0.014
(0.031) (0.038) (0.013) (0.014)

Income per Capita Squared -0.001 -0.001 0.059*** 0.000
(0.001) (0.001) (0.021) (0.001)

Indicator for 1980 0.504*** 0.337** 0.419*** 0.331***
(0.154) (0.167) (0.108) (0.053)

Observations 2,646,127 961,655 747,650 315,289
R-squared -0.1686 -0.0880 0.1190 0.2164

*** p<0.01, ** p<0.05, * p<0.1
Standard errors clustered by MSA-year

29 / 40



Motivation Literature Methods/Data Results Implications References Backup Slides

Change in 10-Year Average Cooling Degree Days

Thousand CDDs (◦F)
• ◦ 1980-2013 CDD; ∗ > 100◦F increase in CDDs
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Change in AC Adoption

Fraction of households with AC
• • 1980-2013 AC share; ◦ • counterfactual AC share due to climate;

∗ > 10% adoption due to climate; Braces: Census region % adoption due to climate
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Climate Change Impact: AC Penetration Across Cities

Prior Decade 1980 AC Total Marginal
Percentile City Average CDD Share AC Effect AC Effect

1 Seattle, WA .05 3.4% 4.5% 85.6%
10 San Jose, CA .25 21.8% 21.1% 79.9%
20 Flint, MI .42 33.4% 34.5% 75%
30 Boston, MA .5 44.2% 40.4% 72.7%
40 Chicago, IL .64 67.3% 50.4% 68.7%
50 New York, NY .67 58.1% 52.1% 67.9%
60 Richland, WA .79 89.3% 60.4% 64.4%
70 Greenville, SC 1.26 65.3% 87.2% 51.1%
80 Jacksonville, NC 1.7 79.6% 107.2% 38.3%
90 Beaumont, TX 2.57 89.3% 129.7% 13.6%
99 Miami, FL 4.11 88.8% 116.6% -30.5%

Note: degree days in thousand ◦F

I Prediction generated by applying average response to change in temperature to the contemporaneous and long-run
average temperatures in different SMSAs (Slide 15, model 5)

ÂC s = β̂
K
1 CDDs + β̂

K
2 CDD

2
s (9)

I In the 400-1200 degree day range the marginal effect of decadal average heat exposure declines modestly, but the AC
share rises from 29% to 76%.

I Over the 90-year interval 1981-2010 to 2080-2099, in a high-warming climate change scenario (RCP 8.5) Boston, MA
shifts from the climate of 1980 New York, NY to that of 1980 Jacksonville, NC (Petri and Caldeira, 2015)⇒∼ 50%
larger AC penetration.
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Climate Change Impact: Electricity Use Across Cities
1980 Total No AC AC Only

CDD Observed Effect Effect Effect
Percentile City in 1980 MWh MWh MWh MWh

1 Seattle, WA .01 15.8 .24 .23 0
10 Spokane, WA .17 15.8 2.71 2.16 .54
20 Albuquerque, NM .46 6 2.03 1.58 .44
30 Providence, RI .57 4 1.82 1.2 .61
40 Chicago, IL .68 5.9 3.1 1.82 1.27
50 New York, NY .83 4.9 2.91 1.6 1.31
60 Philadelphia, PA 1.04 7.1 4.73 2.2 2.52
70 Greensboro, NC 1.42 11.4 9.25 2.63 6.61
80 El Paso, TX 2.06 6.8 6.11 .78 5.33
90 Las Vegas, NV 2.81 9.9 10.13 .08 10.05
99 Miami, FL 4.15 9.5 10.15 0 10.15

Note: degree days in thousand ◦F

I Prediction generated by applying average response to change in temperature and its interaction with predicted AC
penetration to the contemporaneous temperatures in different SMSAs (Slide 16, model 2)

Q̂s = exp{θ̂Q1 CDDs + ψ̂1ÂC s × CDDs} (10)

where ÂC is predicted by eq. (9).
I AC-driven amplification of electricity demand is very slight below 1000 degree days, but increases approximately

linearly with larger heat exposures, accounting for more than half of the pure intensive-margin adjustment in energy
consumption in the hottest cities where AC penetration saturates.

I Over the 1981-2010 to 2080-2099 interval, for RCP 8.5, Chicago, IL shifts from the climate of 1980 New York, NY to
that of 1980 El Paso, TX (Petri and Caldeira, 2015)⇒∼ 60% increase in AC penetration, 4-fold increase in extensive
margin consumption, doubling of total electricity use.
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Comparison with Davis and Gertler’s (2015) Results

literature on adoption of air conditioners, particularly on the role
of climate (25).

Forecasting End-of-Century Energy Use
Since the 1950s global average temperature has increased 1.3 °F
and most climate models predict additional increases of 1.8 °F
or more by the end of the century (26). In this section we combine
our estimates with temperature change predictions from a set
of state-of-the-art climate models to forecast end-of-century
electricity consumption, electricity expenditures, and carbon di-
oxide emissions.

Temperature Predictions. To construct the end-of-century tem-
perature predictions, we started with current temperatures and
then added predicted temperature changes by month of year
from Climate Wizard (www.climatewizard.org/). To capture the
rich cross-sectional variation, we used separate temperature
distributions for each municipality and predicted temperature
changes with a high degree of geographic detail.
We report results for temperature increases corresponding to

RCP 4.5 and RCP 8.5, two potential scenarios for greenhouse
gas concentration trajectories adopted by the Intergovernmental
Panel on Climate Change for its Fifth Assessment Report. With
RCP 4.5 emissions peak around 2040 and then stabilize, with
carbon dioxide concentration levels around 500 parts per million.
RCP 8.5 is essentially “business as usual” with emissions increasing
throughout the century and carbon dioxide concentrations reaching
900 parts per million by end of century. For each scenario we use
average predicted temperature changes from the 25 climate models
that have partnered with Climate Wizard.
Fig. 5 plots the change in the population-weighted temperature

distribution by 2070–2099 in the RCP 8.5 scenario. The four highest
temperature bins increase dramatically. On average, households

experience almost 40 more days per year in which the average
temperature is above 90 °F. Under the RCP 4.5 scenario the
temperature increases are about half as large, but the overall
pattern is similar with a significant increase in the four highest
temperature bins.

Forecasts: Intensive Margin Only. The upper half of Table 1 shows
the end-of-century impacts implied by our estimates of the tem-
perature–response function. These forecasts come directly from our
estimates of the intensive margin (i.e., Fig. 3) and thus should be
viewed as holding the current stock of cooling equipment fixed. We
calculated the change in electricity consumption by multiplying each
element of the temperature–response function by the predicted
change in the number of days in each temperature bin, and then
taking the sum of these products.
Under the RCP 4.5 scenario, electricity consumption increases

by 7.5%. This reflects more intensive use of air conditioners as
well as increased electricity consumption by fans, refrigerators,
and other cooling equipment. In 2010, total residential expendi-
tures on electricity in Mexico were $4.8 billion and total associated
carbon dioxide emissions were 35.9 million tons (Supporting In-
formation). Consequently, a 7.5% increase implies that electricity
expenditures go up by $357 million annually and carbon dioxide
emissions increase by 2.7 million tons per year. Impacts are about
twice as large under the RCP 8.5 scenario.
The estimated percentage changes are similar to previous esti-

mates from the United States.{ One might have expected a smaller
increase in Mexico given the lower saturation of air conditioning.
However, the shape of the temperature–response function makes a
big difference. The U-shaped temperature–response function in the
United States implies a large offsetting decrease in consumption
from fewer cold days. In contrast, we find little temperature re-
sponse on cold days, so temperature changes increase electricity
consumption unambiguously.

Forecasts: Incorporating the Extensive Margins. The lower half of
Table 1 shows predictions that allow for changes along both the in-
tensive and extensive margins. For these calculations, we assume that
household income will increase by 2% annually. This is likely con-
servative. The US Department of Energy, for example, predicts that
Mexican gross domestic product (GDP) will grow at 3.7% annually
between 2010 and 2040 (27). With 2% annual growth, household
income increases approximately fourfold over the next 70 y.
Under the RCP 4.5 scenario, air conditioning saturation increases

to 71% by end of century. For this prediction we use the fully
specified adoption model, along with predicted household income
and CDDs for end of century. Electricity consumption increases by
64%, with electricity expenditures and carbon dioxide emis-
sions increasing proportionally. Impacts are larger under the
RCP 8.5 scenario, with air conditioning saturation at 81%, and
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Fig. 5. Changes in daily mean temperature, RCP 8.5 emissions scenario.

Table 1. End-of-century predictions

Greenhouse gas
concentration trajectory

Households with air
conditioning, %

Change in residential
electricity consumption

(compared with 2010), %

Total change in annual
electricity expenditure

(US 2010 dollars, millions)

Total change in annual
carbon dioxide emissions,

millions of tons

Intensive margin only
RCP 4.5 13 7.5 $357 2.7
RCP 8.5 13 15.4 $733 5.5

Intensive and extensive margins, with 2% annual income growth
RCP 4.5 71 64.4 $3,065 23.1
RCP 8.5 81 83.1 $3,955 29.8

{Deschênes and Greenstone predict an 11.0% increase in US residential energy consump-
tion by end of century (6). This prediction uses an older emissions scenario (A1FI) that is
comparable to RCP 8.5.

Davis and Gertler PNAS | May 12, 2015 | vol. 112 | no. 19 | 5965
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Conclusions
I Cross-SMSA differences in cooling degree days have a large impact on households’ propensity to

adopt AC.
I They also strongly influence households’ electricity consumption, controlling for holdings of

durable goods, especially AC.
I AC adoption by itself does not affect electricity consumption, the interaction of AC with cooling

degree days has a modest positive marginal effect.
I The slight increases in temperature observed post-1980 are insufficient to explain the

subsequent rapid regional penetration of AC.
I However, a cross-city comparison of different climates suggests that the large increases in CDDs

due to vigorous climate warming over the 21st century would substantially increase both AC
adoption and concomitant amplification of electricity consumption.

I Next Steps:
I Experiment with nonlinear probability models of the first-stage adoption decision.
I Refine IV approach in the second stage.
I Explore implications for energy use in developing countries, ways to introduce our degree-day

elasticities into IAMs.
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Drivers of Out of Sample Prediction: Midwest
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Drivers of Out of Sample Prediction: South
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Drivers of Out of Sample Prediction: Northeast
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