
GAMS w/ NEOS and Economic Equilibrium
Modeling with Julia/JuMP

Adam Christensen

All the best presentations begin with an outline...
● Our goals
● Building out GAMS/NEOS capabilities
● NEOS Demo
● Extended Economic Modeling
● End-to-End Value Proposition
● Experimental Projects

Our Goals
● 100% open source economic database
● Members can execute full build stream
● Source of canonical models
● Knowledge base for extended economic modeling

○ Model library for multiple languages
○ Helper tools/data handling

● End-to-End Value Add
○ Data pre-processing tools
○ Model output reduction
○ Visualization

● Economic Software Incubator

Gettin’ the Goods...
● windc.wisc.edu

○ Click on “Downloads”

● WiNDC Flavors
○ Precompiled GDX
○ JSON (download as a zip archive)
○ Re-build your own GDX from source (windc.zip)
○ All original data source files are available (datasources.zip)

https://windc.wisc.edu/

Releases going forward...
● Platform independent (Windows, Mac)
● Releases will occur ~1-2 times per year
● Data updates and bug reports will be available
● WiNDC releases will always be tested against different versions of GAMS
● Releases will be numbered

Releases going forward...
● Platform independent (Windows, Mac)
● Releases will occur ~1-2 times per year
● Data updates and bug reports will be available
● WiNDC releases will always be tested against different versions of GAMS
● Releases will be numbered

In a nutshell… we want to make it easy for researchers to reference this database
in their own publications

GAMS/NEOS Capabilities

What is NEOS?
● Network Enabled Optimization System
● neos-server.org
● Online access to algorithms that solve many classes of optimization problems
● Jobs can be submitted online through a webform

● KESTREL brings your GAMS job to NEOS
● GDX results return as expected

Performance (transit time) penalty -- go get 2 cups of coffee

hi

folks.

https://neos-server.org/

Building out NEOS
● WiNDC members get a base GAMS license to enable NEOS builds

○ Email: adam.christensen@wisc.edu

● WiNDC/NEOS build requires GAMS 26.1.0
○ KESTREL support added for MPSGE models

mailto:adam.christensen@wisc.edu

New Developments
● WiNDC 2.0 database build stream available very soon! (windc.wisc.edu)

○ Updated data (included 2016 data)
○ If building locally -- compatible back to GAMS 24.3.3 (July 2014)
○ More error checking (will stop running if an EXECUTE statement does not finish properly)
○ More modular interface (build, sectoral disaggregation, and re-calibration)

Build core WiNDC Database

Disaggregate into Sectors

Re-Calibrate to Satellite
Data

https://windc.wisc.edu/

New Developments
● WiNDC 2.0 database build stream available very soon! (windc.wisc.edu)

○ Updated data (included 2016 data)
○ If building locally -- compatible back to GAMS 24.3.3 (July 2014)
○ More error checking (will stop running if an EXECUTE statement does not finish properly)
○ More modular interface (build, sectoral disaggregation, and re-calibration)

To build the core WiNDC database locally:

To build with NEOS:

gams run.gms

gams run.gms --neos=yes

https://windc.wisc.edu/

Sectoral Disaggregation
● Options are: 405, bluenote, nass, embodiedcarbon, example

○ 405: full 405 sector disaggregation, not fully functional (small number problems)
○ bluenote: electricity power generation, coal mining, petroleum refineries
○ nass: farming subsectors (oilseed farming, grain farming, etc.)
○ embodiedcarbon: electricity power generation, coal mining, petroleum refineries

To disaggregate the core WiNDC database locally:

To disaggregate on NEOS:

gams disagg.gms --aggr=bluenote

gams disagg.gms --aggr=bluenote --neos=yes

Re-Calibration
● Options are: bluenote, nass

○ bluenote: calibrate to EIA SEDS data 1997..2014, and 2016
○ nass: only 2012 data for now

To re-calibrate the core WiNDC database locally:

To re-calibrate the core WiNDC database with NEOS:

gams recalibrate.gms --satdata=bluenote --year=XXXX

gams recalibrate.gms --satdata=bluenote --year=XXXX --neos=yes

Quick NEOS Demo

Open to User Feedback...
● Should be easy to use
● Should be flexible to suit user’s needs
● Must maintain platform independence to a high degree

Feedback: adam.christensen@wisc.edu

mailto:adam.christensen@wisc.edu

Extended Economic Modeling

Some things...
● Julia is the base language, JuMP is the math programming package for Julia

● Codebase on both change frequently -- can be frustrating
○ Julia / JuMP is totally open source

● JuMP offers connections to many solvers
○ Cbc, Clp, CPLEX, CSDP, ECOS, FICO Xpress, GLPK, Gurobi, Ipopt, MOSEK, OSQP, SCS, SeDuMi
○ Types: LP, QP, NLP, MILP, SOCP, MISOCP, SDP
○ Note: PATHsolver.jl is “available” but not robust

http://www.juliaopt.org/JuMP.jl/v0.19.0/installation/#Getting-Solvers-1

One nice techie thing...
add OhMyREPL… then create a startup.jl file in...

… that contains

~/.julia/config

using OhMyREPL

Getting Data into Julia/JuMP
● Julia/JuMP can approximate “set” notation like GAMS
● Associative arrays (aka “dictionaries”) are the key

○ {key:value} pairs

b(j) 'demand at market j in cases'
 / new-york 325
 chicago 300
 topeka 275 /;

julia> b = parse_data("b")
Dict{Any,Any} with 3 entries:
 "new-york" => 325.0
 "chicago" => 300.0
 "topeka" => 275.0

JSON files are good for this

Getting Data into Julia/JuMP
{
 "b": {
 "type": "GamsParameter",
 "dimension": 1,
 "domain": [
 "j"
],
 "number_records": 3,
 "text": "demand at market j in cases",
 "values": {
 "domain": [
 "new-york",
 "chicago",
 "topeka"
],
 "data": [
 325.0,
 300.0,
 275.0
]
 }
 }
}

Julia/JuMP Development Cycle

model.jl import JSON parse JSON re-solve

model.gms output GDX convert GDX to
JSON

verify solution

data only, not decision variables

**helper function

https://github.com/boxblox/gdx2json
https://github.com/boxblox/gdx2json

Mental Mapping
Economic Model Type Optimization Model Type

Constrained Nonlinear System (CNS)

LP

QCP

NLP

Linear demand, max social surplus

Perfectly (in)elastic supply/demand, min
costs

Isoelastic supply/demand, CES, max
social surplus

Partial equilibrium (isoelastic/CES),
feasibility, no fixed variables

Partial equilibrium (isoelastic/CES),
feasibility, fixed variables

Mixed Complementarity Problem (MCP)

Example Problem
Partial equilibrium (isoelastic supply, CES)

Regional Trade

Differentiated Goods

No Objective Function (Square System)**

**Fixing variables destroys the square-ness in GAMS thanks to the presolver, thus the need for a zero objective function and
the NLP solver (instead of just CNS)

Partial Equilibrium Trade (r￫r’) Model
● Supply function (calibrated isoelastic)

● Compensated CES demand function

● Cost function (calibrated CES form)

● Supply & Demand Balancing

m = Model(with_optimizer(Ipopt.Optimizer))

@variable(m, P[i in r], start=1)
@variable(m, Y[i in r], start=y0[i])
@variable(m, C[i in r], start=1)
@variable(m, X[i in r, j in r], start=x0[i,j])

@constraint(m, output[i in r], sum(X[i,j] for j in r) == Y[i])
@NLconstraint(m, supply[i in r], Y[i] == y0[i] * P[i]^eta[i])
@NLconstraint(m, demand[i in r, j in r], X[i,j] == x0[i,j] * (C[j]/P[i])^esub[j] *
C[j]^(-sigma[j]))
@NLconstraint(m, cost[j in r], C[j] == sum(theta[i,j] * P[j]^(1-esub[j]) for i in
r)^(1/(1-esub[j])))

variables P(r) Equilibrium price,
Y(r) Equilibrium supply,
C(r) Unit cost,
X(r,rr) Demand
OBJ Vacuous objective;

equations objdef, output, supply, demand, cost;
output(r).. Y(r) =e= sum(rr, X(r,rr));
supply(r).. Y(r) =e= y0(r) * P(r)**eta(r);
demand(r,rr).. X(r,rr) =e= x0(r,rr) * (C(rr)/P(r))**esub(rr) * C(rr)**(-sigma(rr));
cost(r).. C(r) =e= sum(rr, theta(rr,r) * P(r)**(1-esub(r)))**(1/(1-esub(r)));

More GAMS ￫ Julia/JuMP Examples Online
https://github.com/uw-windc

● Markusen's M2-3 model (maximize utility, 2 Cobb-Douglas commodities, with rationing)
● Markusen's M2-5 model (maximize utility, 1 good, 1 factor, 1 consumer)
● PIESQCP formulation (William Hogan, 1975) (maximize social welfare)
● (Spatial) Partial Equilibrium (as seen in this presentation)
● More to come...

https://github.com/uw-windc

End-to-End Value

Python/GAMS Workflow...

Complicated Data
Structures...

Write input data (sets,
parameters, etc.) to GDX

(GDXRW)

Input GDX file

GAMS Model

Set enabled
Post-Processing

Independent
Scenario

Post-Processing

Read in output
GDX (GDXRW)

Automated
visualization,
reporting, etc.

GDX is the primary data container

https://github.com/boxblox/gdxrw
https://github.com/boxblox/gdxrw

GDXRW

Example

https://github.com/boxblox/gdxrw/blob/master/example.py

Automated Plot Creation...

Volume of data can be enormous

All data read directly from the output GDX

Automation reduces chances of silly errors

Advanced Visualization
● Geocode data on the fly, calculate real distances/times on a road network

● Connect data directly to maps to debug modelling errors or present results

$set key PIzSygmXdMewURGxUD38S2t4VqBQEyVA

execute 'python distance.py --key=%key% --input=query.csv
--output=output.csv';

Mapping Example
Python, Folium, Google API

https://pypi.org/project/folium/

WiNDC Capabilities
Custom workflows can be designed and implemented

Primary Tools:

● GAMS
● Julia/JuMP
● Python (numpy, scipy, pandas, folium, matlibplot, etc.)
● Expanding our visualization capabilities (D3)

https://d3js.org/

Software Incubator

Pilot-Scale Projects
● Pivot Tables

● Graph-based CES syntax

Pivot Tables
● Incredibly useful to reduce data
● Not easy in GAMS (we want to preserve data as 2D)
● GPivot

○ Can be executed in from a .gms file
○ Reads a GDX for data
○ Can pass a query (SQL-like) in order to create differently scoped pivot tables

Example

https://github.com/boxblox/gpivot
https://github.com/boxblox/gpivot/blob/master/trnsport_pivot.gms

Graph-Based CES Functions
● CES functions are an economic powerhouse
● Nested CES functions offer even more flexibility

● Plagued by messy algebra
● MPSGE handles this, but is not available for other platforms (Julia/JuMP)

Investigating ways to rapidly define complicated economic functions

Proof of Concept
● Working in the GAMS framework
● Utilize GAMS EMP (symbolic differentiation & reformulation)

Consumer’s Utility Function:

EQUATION objConsumer(h);
objConsumer(h)..
consumerUtility(h)
=E=
sum(s, alpha(s,h)**(1/sigmac(h)) *
(x(s,h))**((sigmac(h)-1)/sigmac(h)))**(sigmac(h)/(sigmac(h)-1));

Proof of Concept
Define Consumer’s Utility Function with Graph Syntax:

objConsumer(h)
{'!consumerUtility(h)':['x(s,h)']}
@esub{'consumerUtility':'sigmac(h)'}
@shares{'consumerUtility':'alpha(s,h)'}

consumerUtility(“h1”)

x(“s1”,“h1”) x(“s2”,“h1”)...

σ(“h1”)

consumerUtility(“hX”)

x(“s1”,“hX”) x(“s2”,“hX”)...

σ(“hX”)

...

! ⇒ top node

Proof of Concept
Define Consumer’s Utility Function with Graph Syntax:

objConsumer(h)
{'!consumerUtility(h)':['x(s,h)']} main CES structure
@esub{'consumerUtility':'sigmac(h)'} define elasticities for each nest level
@shares{'consumerUtility':'alpha(s,h)'} define share coefficients

consumerUtility(“h1”)

x(“s1”,“h1”) x(“s2”,“h1”)...

σ(“h1”)

consumerUtility(“hX”)

x(“s1”,“hX”) x(“s2”,“hX”)...

σ(“hX”)

...

Proof of Concept
Define Consumer’s Utility Function with Graph Syntax:

objConsumer(h)
{'!consumerUtility(h)':['x(s,h)']} main CES structure
@esub{'consumerUtility':'sigmac(h)'} define elasticities for each nest level
@shares{'consumerUtility':'alpha(s,h)'} define share coefficients

Only regex string parsing

EQUATION objConsumer(h);
objConsumer(h)..
consumerUtility(h)
=E=
sum(s, alpha(s,h)**(1/sigmac(h)) *
(x(s,h))**((sigmac(h)-1)/sigmac(h)))**(sigmac(h)/(sigmac(h)-1));

GAMS/EMP version verified

against pure MCP formulation

Thanks.

WiNDC wants to work with you

