Quantifying Disruptive Trade Policies

Edward Balistreri, Christoph Böhringer, Thomas F. Rutherford

Commerce Department Short Course University of Wisconsin

24 January 2022

Motivation

- Applied Trade Policy Analysis
- Armington, Krugman and BRF
- Some Calculations
- Under the Hood

- Academic arguments in favor of cooperative free trade are pervasive,
- but the conventional wisdom is challenged by a wave of nationalist political movements.
- Theoretical arguments require reality check to contribute to the policy debate.

- *Bilateral disputes* with escalating tariffs, e.g. US China in 2018 or Smoot-Haley in 1930. Underlying logic one or the other trading partner sees the current division of gains from trade as unfair.
- *Protective policies* with a more narrow strategic rationale e.g., China's concern for food security. Like energy security, food security has a long history. The key policy question: Is the cost of food self-sufficiency worth the benefits?
- Concern over *bilateral trade deficits*, interpreted by naive politicians as "unfair". In these cases, how costly are policies which establish balanced bilateral trade?

- Minghao Li, a colleague at Iowa State University's Center for Agriculture and Rural Development, has compiled and generously shared data consistent with the GTAP conventions on tariffs and other distortions related to the 2018 trade war (updated to August 2018). (See https://www.card.iastate.edu/china/trade-war-data/.)
- We aggregate these data to our scope of study. For those countries that negotiated an exemption from the steel tariffs (Brazil and Argentina, and South Korea) we simply applied a Voluntary Export Restraint (VER) equal to 15% ad valorem.

CHN Exports to the USA

USA Exports to the CHN

USA Tariffs on Steel (model dataset)

USA Tariffs on Steel (full dataset)

Welfare Effects of Tariffs: USA

ヘロン 人間 とくほと 人 ほとう

æ

Welfare Effects of Tariffs: CHN

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

Journal of Global Economic Analysis, Volume 1 (2016), No. 2, pp. 1-77.

GTAPINGAMS: Multiregional and Small Open Economy Models

By Bruno Lanz^a and Thomas F. Rutherford^b

A D M 4 目 M 4 日 M 4 1 H 4

GTAP Transactions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で

GTAP Commodities (57)

PDR	Paddy rice	LUM	Wood products
WHT	Wheat	PPP	Paper products, publishing
GRO	Cereal grains nec	P_C	Petroleum, coal products
V_F	Vegetables, fruit, nuts	CRP	Chemical,rubber,plastic prods
OSD	Oil seeds	NMM	Mineral products nec
C_B	Sugar cane, sugar beet	I_S	Ferrous metals
PFB	Plant-based fibers	NFM	Metals nec
OCR	Crops nec	FMP	Metal products
CTL	Cattle, sheep, goats, horses	MVH	Motor vehicles and parts
OAP	Animal products nec	OTN	Transport equipment nec
RMK	Raw milk	ELE	Electronic equipment
WOL	Wool, silk-worm cocoons	OME	Machinery and equipment nec
FRS	Forestry	OMF	Manufactures nec
FSH	Fishing	ELY	Electricity
COA	Coal	GDT	Gas manufacture, distribution
OIL	Oil	WTR	Water
GAS	Gas	CNS	Construction
OMN	Minerals nec	TRD	Trade
CMT	Meat: cattle,sheep,goats,horse	OTP	Transport nec
OMT	Meat products nec	WTP	Sea transport
VOL	Vegetable oils and fats	ATP	Air transport
MIL	Dairy products	CMN	Communication
PCR	Processed rice	OFI	Financial services nec
SGR	Sugar	ISR	Insurance
OFD	Food products nec	OBS	Business services nec
B_T	Beverages and tobacco products	ROS	Recreation and other services
TEX	Textiles	OSG	PubAdmin/Defence/Health/Educat
WAP	Wearing apparel	DWE	Dwellings
LEA	Leather products	CGD	Aggregate investment

Structural Sensitivity of China's Optimal Tariff

- Motivation
- Applied Trade Policy Analysis
- Armington, Krugman and BRF
- Some Calculations
- Under the Hood

The Static Economic Effects of the UK joining the EEC: A General Equilibrium Approach

MARCUS H. MILLER London School of Economics

and

JOHN E. SPENCER The New University of Ulster

The Review of Economic Studies 44(1) 1977

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Standard neoclassical multi-sector multi-region Armington trade model
- Constant-returns-to-scale (CRTS) perfect competition setting
- Gains from specialisation and inter-industry trade due to differences in comparative advantage
- Endogenous terms-of-trade ⇒ scope to extract rents from strategic trade policies (tariffs, quotas or NTBs)

In Defence of a Neoclassical Approach

- 1. Versatile: can be extended to take into account many aspects which are often assumed to be ignored: risk and uncertainty, technological details, expectations.
- 2. Can be both calibrated and estimated. Hence, it is possible to formulate a model which matches both with the current economic statistics (supply and demand) and which matches historical evidence about the responsiveness of quantity to price.
- 3. Approach can be consistant with the principal of Occam's Razor: "A scientific theory should be as simple as possible, but no simpler."
- 4. Modesty is warranted: existence of model results should be a *necessary but not a sufficient* condition as justification for a particular policy proposal.

The CGE Challenge: Translating Stories into Equations

Ŵ

Incorporate new trade theory à la Krugman:

- Trade increases varieties as intermediate input to industries (leading to productivity gains) and input to consumption (directly increasing welfare due to the increased availability of foreign varieties).
- Increasing-returns-to-scale (IRTS) with imperfect competiton.
- Add an extension with a reduced form version of Melitz (the bilateral representative firms model - BRF).
- Representation of FDI (data adjustments, nesting, ...).

- Motivation
- Applied Trade Policy Analysis
- Armington, Krugman and BRF
- Some Calculations
- Under the Hood

- Armington (1969) as subsequently applied by Shoven and Whalley is based on perfect competitive markets and constant returns to scale.
- **Krugman** (1979, 1980) is based on imperfect competition in which changes in the number of firms (varieties) influences aggregate productivity. Key simplifying assumption: all varieties are sold in all regions.
- **Bilateral Representative Firms** (BRF) is a model which emphasizes the extensive margin of trade. Like the Krugman, BRF incorporates a Dixit-Stiglitz variety effect, but unlike Krugman, not all varieties from region *r* are sold in every region *s*.

W

The CRTS trade model incorporates regionally differentiated goods and is immediately appealing from an empirical perspective. Any observed pattern of trade can be exactly accommodated, and this pattern is independent of the elasticity of substitution.

The Armington composite is given by:

$$\mathcal{Q}_{is} = \left(\sum_r \lambda_{irs} q^{
ho}_{irs}
ight)^{1/
ho}$$

One degree of freedom (ρ) – given benchmark prices \overline{p}_{irs} we can assign values λ_{irs} such that

$$\min \sum_{r} \overline{p}_{irs} q_{irs}$$
 s.t. $Q_{is} = 1$

has the solution $q_{irs} = \overline{q}_{irs}$.

Dixit-Stiglitz Productivity Effects: Krugman

Goods are differentiated by firm, and net utility of the composite commodity reflects both the number of firms (variety) and output per firm:

$$Y_r = \left(\sum_{i=1}^{N_r} x_{ir}^{1-1/\sigma}\right)^{\sigma/(\sigma-1)} = N_r^{1/\sigma} X_r$$

where

- N_r is the number of firms operating in region r,
- xir is output of the *i*th firm,
- x_r is output of a representative firm and
- X_r is the resource cost of output which with symmetry is

$$X_r = \sum_{i=1}^{N_r} x_{ir} = N_r x_r$$

Dixit-Stiglitz Productivity: BRF

W

Like the Krugman model, goods in the BRF model are differentiated by region of origin, but not all goods from region r are sold in all regions s. The net utility of goods is given by:

$$Y_{rs} = \left(\sum_{i=1}^{N_{rs}} x_{irs}^{1-1/\sigma}\right)^{\sigma/(\sigma-1)} = N_{rs}^{1/\sigma} X_{rs}$$

where

- σ is the elasticity of substitution between varieties
- N_{rs} is the number of firms from region r supplying region s,
- xirs is output of the *i*th firm and
- x_{rs} is output a representative firm and
- X_{rs} is the resource cost of goods supplied from region r in region s. As above, with symmetry:

$$X_{rs} = \sum_{i=1}^{N_{rs}} x_{irs} = N_{rs} x_{rs}$$

FDI Technology

Service provision through *commercial presence* involves a locally-established affiliate, subsidiary, or representative office of a foreign-owned and -controlled company, and within the model, the supply by firms from region r to region s through FDI is portrayed by a calibrate Leontief aggregate:

$$Y_{irs} = \overline{Y}_{irs} \min \left[\frac{\overline{E}_{irs}}{\overline{E}_{irs}}, \frac{\overline{D}_{irs}}{\overline{D}_{irs}} \right]$$

in which

- E_{irs} represents *cross-border provision* of *i* sector services from region *r* delivered in region *s*, and
- *D*_{*irs*} represents *commercial presence* provision of services through the employment of domestic factors (e.g., British bankers work for Deutsche Bank in London).

In the model, cross-border provision of FDI-related services depends on intermediate service inputs (X_{irs}) and FDI capital (K_{irs})

$$E_{irs} = f(X_{irs}, K_{irs})$$

As a shorthand representation of the competitive section process in the BRF model, technology f(.) is calibrated to base year trade flows and an assumption of the price elasticity of bilateral supply.

Reduced Form Productivity Effects (HMT)

• Elasticity of *aggregate* productivity with respect to trade flows equals 0.3:

$$\hat{\phi} = \left(\frac{\sum_{j} M_{j} + X_{j}}{\sum_{j} \bar{M}_{j} + \bar{X}_{j}}\right)^{0.3}$$

• Elasticity of *sectoral* productivity with respect to trade flows equals 0.3:

$$\phi_i = \left(\frac{M_i + X_i}{\bar{M}_i + \bar{X}_i}\right)^{0.3}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

Aggregate Productivity Effects

Sensitivity: Sectoral Productivity Effects

Key insight: the impacts of reduced form productivity "kickers" may be fragile and depend on details of the implementation. Productivity impacts are better investigated in a structural framework.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Tarr and Rutherford, JIE 75(1), 2008

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Motivation
- Applied Trade Policy Analysis
- Armington, Krugman and BRF
- Some Calculations
- Under the Hood

Regio	ns:	Goods	6	Facto	rs:
EUR	EU-27 plus	CRTS	Structure	LAB	Unskilled
USA	U.S.A	AGR	Agricultural Crops		Labor
CHN	China	ENR	Energy	TEC	Technicians and
CAN	Canada	IRTS	Structure		Professionals
MEX	Mexico	MTC	Meat and Dairy Prod.	CLK	Clerks
B_A	Brazil & Argentina	OFP	Other Food Prod.	MGR	Managers and
KOR	S. Korea	I_S	Iron and Steel		Officials
OEC	Rest of OECD	MVH	Motor Vehicles	SRV	Services workers
ROW	Rest of World	OME	Machinery and Equipment		workers
		MFR	Other Manufactured Goods	CAP	Capital
		SER	Services	LND	Land
				RES	Resource

W				
W	\sim			
W	1000			۰.
W				2
W	124			
W				
W	н.	u	v	9
	12.1			σ.
	100			
10407	- 1		e -	

	USA Import Tariffs (%):							
	Agri.	Meat Dairy	Proces. Food	Engy.	Iron Steel	Motor Vehc.	Mach. Equip.	Othr. Mfg.
Exporter:								
EU					18.4			0.1
China				17.3	13.2	3.2	15.6	2.3
Canada					19.5			0.7
S. Korea					VER			0.0
Mexico					20.6			0.1
Brazil & Argentina					VER			0.3
Rest of World					10.6			0.1
Other OECD					16.4			0.0

Tariffs on USA Exports (%):

	Agri.	Meat Dairy	Proces. Food	Engy.	Iron Steel	Motor Vehc.	Mach. Equip.	Othr. Mfg.
Importer:								
EU	1.1		5.6		7.2	0.0	0.6	1.1
China	22.7	13.7	12.7	20.8	1.5	21.3	1.7	2.6
Canada	0.0	0.6	2.4		17.6		0.2	0.9
Mexico	0.4	4.4	2.4		6.2		0.1	0.0
Rest of World	0.2	0.0	0.0		0.0	0.0	0.0	0.0
Other OECD	0.2		0.0	1.2			0.0	0.2

Trade War: Welfare Impacts (EV \$B)

	Benchmark	Benchmark	Equivalent Variation (\$B)			Equiva	Equivalent Variation (%)		
	GDP (\$B)	Cons. (\$B)	BRF	Krg	Arm.	BRF	Krg.	Arm.	
EU	18,220	10,844	11.1	1.0	0.0	0.10	0.01	0.00	
USA	15,545	10,897	-48.0	-10.3	-12.2	-0.44	-0.09	-0.11	
Rest of World	13,569	7,723	7.0	0.5	0.5	0.09	0.01	0.01	
Other OECD	9,399	5,628	7.0	0.6	0.6	0.12	0.01	0.01	
China	7,562	2,815	-8.7	-7.7	4.5	-0.31	-0.27	0.16	
Brazil & Argentina	3,033	1,848	1.9	0.1	0.4	0.10	0.01	0.02	
Canada	1,780	980	-0.9	-0.3	-0.1	-0.09	-0.03	-0.01	
S. Korea	1,202	634	1.3	0.2	-0.1	0.20	0.04	-0.01	
Mexico	1,170	763	0.3	0.1	0.0	0.04	0.01	0.00	

Trade War: U.S. Output Impacts by sector (%)

Trade War: U.S. Output Impacts by sector (\$)

	Benchmark	Change	Change
	(\$B)	(\$ B)	(%)
Expenditures			
Consumption	10,897	-48.0	-0.4
Investment	2,875	32.2	1.1
Government	2,568	-5.2	-0.2
Net Exports (X-M)	-795	-3.3	0.4
Total	15,545	-24.4	-0.2
Income by Sector			
Agriculture	142	-6.6	-4.7
Meat and Dairy	121	-1.2	-1.0
Other Processed Food	248	-1.3	-0.5
Energy	542	0.1	0.0
Iron and Steel	74	5.5	7.5
Motor Vehicles	162	-1.1	-0.7
Mach. and Equipment	560	15.6	2.8
Manufacturing	1,530	5.8	0.4
Services	12,141	-41.1	-0.3
Consumption	25	-0.1	-0.4
Investment	0	0.0	-2.1
Government	0	0.0	-2.2
Total	15.545	-24.4	-0.2

			<u> </u>
	Benchmark	Change	Change
	(\$ B)	(\$ B)	(%)
Income by Function			
Unskilled Labor	1,846	-5.7	-0.3
Technicians and Professionals	857	-4.0	-0.5
Clerks	1,148	-5.2	-0.5
Managers and Officials	4,513	-20.5	-0.5
Services workers	654	-3.0	-0.5
Capital	2,618	-12.2	-0.5
Land	53	-4.3	-8.0
Resource	81	-0.3	-0.3
Factor tax revenue	1,415	-5.0	-0.4
Sales tax on domestic	107	0.4	0.3
Sales tax on imports	15	-0.1	-0.7
Output tax revenue	651	-0.5	-0.1
Tariff revenue (crts)	1	0.0	2.4
Tariff revenue (irts)	258	18.2	7.0
Export tax revenue (crts)	1	0.0	0.2
Export tax revenue (irts)	5	0.0	-0.2
Net multinational receipts	1,320	17.9	1.4
Total	15,545	-24.4	-0.2

	Benchmark	Benchmark	20% NTBs	on the US	20% N -10% NTB o	TBs on the US
	GDP (\$B)	Cons. (\$B)	EV (\$B)	EV (%)	EV (\$B)	EV (%)
EU	18,220	10,844	-1.6	-0.01	0.1	0.00
USA	15,545	10,897	-2.4	-0.02	-1.0	-0.01
Rest of World	13,569	7,723	-1.5	-0.02	-0.6	-0.01
Other OECD	9,399	5,628	-0.6	-0.01	0.2	0.00
China	7,562	2,815	-4.4	-0.16	-4.7	-0.17
Brazil & Argentina	3,033	1,848	0.2	0.01	1.2	0.06
Canada	1,780	980	0.1	0.01	0.2	0.02
S. Korea	1,202	634	-0.1	-0.02	0.1	0.02
Mexico	1,170	763	0.0	0.00	0.1	0.01

China Food-Security Scenario

Balanced US-China trade policy options (EV \$B)

- Contribution to policy debate: disruptive trade policies represent a high cost approach to non-economic objectives (e.g. food imports and risks of dependency)
- Structural sensitivity analysis: after adopting a consistent set of parameters across the models we generally find larger welfare impacts in the bilateral representative firms structure.