## AAE 526: More Linear Programming

#### Thomas F. Rutherford

Fall Semester, 2019 Department of Agricultural and Applied Economics University of Wisconsin, Madison

September 9, 2019





#### • Another LP example

- Linear algebra and indexed GAMS code
- Linear programs in standard form
- Supersize me!
- Visualization



The Wyndor Glass Co. produces high-quality glass products, including windows and glass doors. It has three plants. Aluminum frames and hardware are made in Plant 1, wood frames are made in Plant 2 and Plant 3 cuts the glass and assembles the products.

Profits are 3 for product 1 and 5 per unit of product 2.

Because of declining earnings, top management has decided to revamp the product line. Unprofitable products are to be discontinued, and product capacity will be reassigned to launch two new products.

## Describe Constraints

The data indicates that each batch of product 1 produced per week uses 1 hour of production time per week in Plant 1, whereas only 4 hours per week are available. The restriction is written mathematically as

$$x_1 \leq 4$$

Similarly, Plant 2 imposes the restriction

$$2x_2 \leq 12$$

The number of hours of production time used per week in Plant 3 given  $x_1$  and  $x_2$  is  $3x_1 + 2x_2$  (3 hours of production per batch of good 1 and 2 hours per batch of good 2). The available capacity in Plant 3 provides the constraint:

$$3x_1 + 2x_2 \le 18$$

Finally, production rates cannot be negative, so it is necessary to impose restrictions  $x_1 \ge 0$  and  $x_2 \ge 0$ 





#### $\max Z = 3x_1 + 5x_2$

subject to the restrictions

and

$$x_1 \ge 0, x_2 \ge 0$$

| gamside: D:\newproject.gpr - [d:\Optimization\lectures\Lecture2\wyndor.gms] |                                                         |                                            |  |  |  |  |  |
|-----------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|--|--|--|--|--|
| 📕 File                                                                      | File Edit Search Windows Utilities Model Libraries Help |                                            |  |  |  |  |  |
| <b>&gt;</b>                                                                 |                                                         | A (a) 🚭 🕒                                  |  |  |  |  |  |
| wyndor.gr                                                                   | ns                                                      |                                            |  |  |  |  |  |
| VAR                                                                         | IABLES                                                  |                                            |  |  |  |  |  |
|                                                                             | Z                                                       | Objective function (\$1000 per week)       |  |  |  |  |  |
|                                                                             | X1                                                      | Glass doors (batches per week)             |  |  |  |  |  |
|                                                                             | X2                                                      | Wood framed windows (batches per week);    |  |  |  |  |  |
| EQU                                                                         | ATIONS                                                  |                                            |  |  |  |  |  |
|                                                                             | Zdef                                                    | Defines the objective function             |  |  |  |  |  |
|                                                                             | plant1                                                  | Constraint imposed by plant 1              |  |  |  |  |  |
|                                                                             | plant2                                                  | Constraint imposed by plant 2              |  |  |  |  |  |
|                                                                             | plant3                                                  | Constraint imposed by plant 3;             |  |  |  |  |  |
| zde                                                                         | f                                                       | Z =E= 3*X1 + 5*X2;                         |  |  |  |  |  |
| pla                                                                         | nt1                                                     | X1 =L= 4;                                  |  |  |  |  |  |
| pla                                                                         | nt2                                                     | 2*X2 =L= 12;                               |  |  |  |  |  |
| pla                                                                         | nt3                                                     | 3*X1 + 2*X2 =L= 18;                        |  |  |  |  |  |
| MOD                                                                         | EL wyndor                                               | <pre>/zdef, plant1, plant2, plant3/;</pre> |  |  |  |  |  |
| SOL                                                                         | SOLVE wyndor USING LP MAXIMIZING Z;                     |                                            |  |  |  |  |  |



This problem has only two dimensions, so a graphical procedure can be employed. We use label the axes as  $x_1$  and  $x_2$ . The first step is then to identify on the graph values of  $(x_1, x_2)$  which are *feasible* (consistent with the restrictions).



#### Values of $(x_1, x_2)$ consistent with the constraints $0 \le x_1 \le 4$ and $0 \le x_2$ :



#### The Feasible Region





#### Solution



The optimal solution is  $x_1^* = 2, x_2^* = 6$  with  $Z^* = 36$ . This implies 2 batches of product 1 and 6 batches of product 2 will be produced per week, providing a total profit of \$36,000 per week.





#### • Another LP example

#### • Linear algebra and indexed GAMS code

- Linear programs in standard form
- Supersize me!
- Visualization

```
$TITLE Brewery Profit Maximization
       i
              Products /lager, ale/
set
               Ingredients /
       i.
                      malt
                            Malt,
                      yeast Yeast,
                      dehops German hops,
                      wihops Wisconsin hops/;
parameter
       p(j) Profit by product /lager 12, ale 9/
       s(i)
               Supply by ingredient /malt 4800, yeast 1750,
                                      dehops 1000, wihops 1750/;
table
               a(i,j) Requirements
                      lager
                              ale
       malt
                      4
                              2
                      1
                              1
       veast
                      1
       dehops
                              0
       wihops
                      0
                              1:
```

12 / 59



```
Y(j) Production levels,
variables
              7.
                    Profit (maximand):
nonnegative variable Y;
equations
             supply(i) Ingredient supply
              profit Defines Z;
supply(i).. sum(j, a(i,j)*Y(j)) =L= s(i);
profit.. Z =E= sum(j, p(j)*Y(j));
MODEL BREWERY / supply, profit/;
solve BREWERY using LP maximizing Z;
```



A matrix is an array of numbers.  $A \in \mathbb{R}^{m \times n}$ .

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

which has *m* rows and *n* columns.

The table statement in GAMS can be used to define a matrix:

## Table versus Parameter



#### A matrix may be specified either the table or parameter statement:

```
set i Row indices /1*3/,
      j Column indice /a,b/;
table a(i,j) Matrix with three rows and two columns
                b
           а
      1 0.23 12.3
      2 -0.1 2.4
      3 3.2 0.1;
parameter b(i,j) The same matrix in database format /
      1.a 0.23
      2.a -0.1
      3.a 3.2
      1.b 12.3
      2.b 2.4
      3.b 0.1 /;
parameter c(i,j) Check that a=b; c(i,j) = a(i,j) - b(i,j); display c;
       22 PARAMETER c check that a=b
                 (ALL 0.000)
```



Two matrices can be multiplied *if their inner dimensions agree*. In matrix notation (MATLAB style):



In detached coefficient notation (GAMS style) we write:

$$c_{ij} = \sum_k a_{ik} b_{kj}$$

In GAMS syntax, we have:

```
c(i,j) = sum(k, a(i,k) * b(k,j));
```



- The transpose operator  $A^T$  swaps rows and columns. If  $A \in \mathbb{R}^{m \times n}$ , then  $A^T \in \mathbb{R}^{n \times m}$  and  $(A^T)_{ij} = A_{ji}$
- It follows that:

$$(A^{T})^{T} = A$$
$$(AB)^{T} = B^{T}A^{T}$$

## Linear and affine functions

• A function  $f(x_1, ..., x_m)$  is *linear* in the variables  $x_1, ..., x_m$  if there exists constants  $a_1, ..., a_m$  such that

$$f(x_1,\ldots,x_m)=a_1x_1+\ldots+a_mx_m=\sum_i a_ix_i=a^Tx$$

• A function  $f(x_1, ..., x_m)$  is *affine* in the variables  $x_1, ..., x_m$  if there exists constants  $b, a_1, ..., a_m$  such that

$$f(x_1,...,x_m) = ba_1x_1 + ... + a_mx_m = b + \sum_i a_ix_i = b + a^Tx_i$$

- Examples:
  - 3x y is *linear* in (x, y).
     2xy + 1 is *affine* in x and y, but not in (x, y).
     x<sup>2</sup> + y<sup>2</sup> is neither linear nor affine.





Several linear or affine functions can be combined:

 $\begin{array}{cccc} a_{11}x_1 & + \dots & +a_{1n}x_n + b_1 \\ a_{21}x_1 & + \dots & +a_{2n}x_n + b_2 \\ \vdots & \vdots & \\ a_{m1}x_1 & + \dots & +a_{mn}x_n + b_m \end{array} \Rightarrow \left[ \begin{array}{c} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{array} \right] \left[ \begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right] + \left[ \begin{array}{c} b_1 \\ \vdots \\ b_n \end{array} \right]$ 

which can be written simply as Ax + b. Same definitions apply:

- A vector-valued function F(x) is linear in x if there exists a constant matrix A such that F(x) = Ax.
- A vector-valued function F(x) is affine in x if there exists a constant matrix A and vector b such that F(x) = Ax + b.

# W

## Matrix basics: inner and outer products

A vector is a column matrix. We write  $x \in \mathbb{R}^n$  to mean that

$$\mathbf{x} = \left[ \begin{array}{c} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{array} \right]$$

This is an  $n \times 1$  matrix.

Two vectors  $x, y \in \mathbb{R}^n$  can be multiplied together in two ways. Both are valid matrix multiplications:

- inner product: produces a scalar,  $x^T y = x_1 y_1 + \cdots + x_n y_n$ .
- **outer product**: produces an *n* × *n* matrix.

$$xy^{T} = \begin{bmatrix} x_{1}y_{1} & \cdots & x_{1}y_{n} \\ \vdots & \ddots & \vdots \\ x_{n}y_{1} & \cdots & x_{n}y_{n} \end{bmatrix}$$

## Calculating Inner and Outer Products in GAMS

```
set i/i1*i3/:
parameter x(i), y(i), xy, xyt(i,i);
       Generate two random arrays containing values
*
       between zero and one:
*
x(i) = uniform(0,1); y(i) = uniform(0,1);
       Inner product:
*
xy = sum(i, x(i)*y(i));
       Need a second symbol to refer to the set i:
*
alias (i,j);
* Outer product:
xyt(i,j) = x(i)*y(j);
display x, y, xy, xyt;
```

21 / 59

|          | 23 PARA | METER x   |       |   |       |  |
|----------|---------|-----------|-------|---|-------|--|
| i1 0.172 | , i2    | 0.843, i3 | 0.550 |   |       |  |
|          | 23 PARA | METER y   |       |   |       |  |
| i1 0.301 | , i2    | 0.292, i3 | 0.224 |   |       |  |
|          |         |           |       |   |       |  |
|          | 23 PARA | METER xy  |       | = | 0.421 |  |
|          | 23 PARA | METER xyt |       |   |       |  |
|          | i1      | i2        | i3    |   |       |  |
| i1       | 0.052   | 0.050     | 0.038 |   |       |  |
| i2       | 0.254   | 0.246     | 0.189 |   |       |  |
| i3       | 0.166   | 0.161     | 0.123 |   |       |  |





- Another LP example
- Linear algebra and indexed GAMS code
- Linear programs in standard form
- Supersize me!
- Visualization

## The linear program

A linear program is an optimization model with:

- real-valued variables ( $x \in \mathbf{R}^n$ )
- linear cost function  $(c^T x)$
- constraints may be:
  - affine equations (Ax = b)
  - affine inequalities  $(Ax \le b \text{ or } Ax \ge b)$
  - combinations of the above
- individual variables may have:
  - bounds  $(p \leq x_i$  , or  $x_i \leq q$ , or  $p \leq x_i \leq q)$
  - no bounds (x<sub>i</sub> is unconstrained)

There are many equivalent representations of any linear program.



## Linear Programming



#### Standard Form:

Why it's hard:

- Lots of variables (*n* of them)
- Lots of boundaries to check (the inequalities)

Why it's not impossible:

• All expressions are linear

For any given linear programming problem, exactly one of the following statements applies:

- 1. The model is infeasible: there is no x that satisfies all the constraints. (is the model correct?)
- The model is feasible, but unbounded: the cost function can be arbitrarily improved. (forgot a constraint?)
- Model has a solution which occurs on the boundary of the feasible polyhdron. Note that there is no guarantee that the solution is unique – there may be many solutions!



infeasible



unbounded



boundary





• Every linear program can be put into the form:

$$\max_{z \in \mathbb{R}^n} c^T z$$

subject to:

$$Az \leq b$$
  
 $z > 0$ 

• This is call the *standard form* of a linear program.

#### Brewery Profit: Standard Form



$$\begin{array}{rll} \max_{x,y} & 120x + 90y \\ {\rm s.t.:} & 4x + 2y & \leq & 4800 \\ & x + y & \leq & 1750 \end{array}$$

 $0 \le x \le 1000, \quad 0 \le y \le 1500$ 

is equivalent to:

$$\max_{x,y} \begin{bmatrix} 120 \\ 90 \end{bmatrix}^{T} \begin{bmatrix} x \\ y \end{bmatrix}$$
  
s.t. 
$$\begin{bmatrix} 4 & 2 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \leq \begin{bmatrix} 4800 \\ 1750 \\ 1000 \\ 1500 \end{bmatrix}$$
$$x, y \ge 0$$

Hence, our brewery profit maximization model can be transformed into standard inequality form with the assignments:

$$z = \begin{bmatrix} x \\ y \end{bmatrix} \qquad c = \begin{bmatrix} 120 \\ 90 \end{bmatrix}$$
$$A = \begin{bmatrix} 4 & 2 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad b = \begin{bmatrix} 4800 \\ 1750 \\ 1000 \\ 1500 \end{bmatrix}$$

A partial list, taken from Ferris et al., Chapter 1:

- Resoure allocation
- The diet problem
- Linear surface fitting
- Load balancing
- Classification

. . .

• Minimum cost network flow





A company has *m* products which are produced with *n* resources. The value of product *i* is  $c_i$ , while each unit of resource *j* costs  $d_j$  dollars. One unit of product *i* requires  $a_{ij}$  units of resource *j*, and a maximum of  $b_j$  units of resource *j* are available:

$$\max_{x,y} z = \sum_{i} c_{i} y_{i} - \sum_{j} d_{j} x_{j}$$

subject to

$$x_j = \sum_i a_{ij} y_i, \quad x_j \leq b_j, \quad x_j \geq 0, y_i \geq 0$$

Note that the constraints can be written in *detached coefficient form* as:

$$x_j = \sum_i a_{ij}y_i = a_{1j}y_1 + a_{2j}y_2 + \ldots + a_{mj}y_m$$



Given the prices  $p_j$  of food type j, the content of nutrient i in food  $j(a_{ij})$  and the dietary requirement of nutrient i,  $b_i$ , solve:

$$\min_{x} z = \sum_{j} p_{j} x_{j}$$

subject to

$$\sum_{j} a_{ij} x_j \ge b_i, \quad \forall i$$
$$x_j \ge 0$$

## Linear Surface Fitting



Given a set of observations  $A = [a_{ij}]$  and  $b_i$ . Find weights on the columns of A and a scalar constant  $\gamma$  which best "predicts" the value of b on the basis of observations  $a_{ij}$ , assuming a linear model:

$$\min_{\mathbf{x},\gamma}\sum_{i=1}^{m}\left|\sum_{j}a_{ij}x_{j}+\gamma-b_{i}\right|$$

or, equivalently

$$\min_{x,\gamma,y} z = \sum_i y_i$$

subject to

$$-y_i \leq \sum_j a_{ij}x_j + \gamma - b_i \leq y_i$$

Note that the constraint ensures that each  $y_i$  is no smaller than the absolute value  $|\sum_j a_{ij}x_j + \gamma - b_i|$ .

## Load Balancing



Balance computational work among n processors, distributing the load in such a way that the lightest-loaded processor has as heavy a load as possible:

- $p_i$  Current load of processor  $i = 1, 2, \ldots, n$
- *L* Total load to be distributed
- $x_i$  Fraction of additional load L to be distributed to processor i, with  $x_i \ge 0$  and  $\sum_i x_i = 1$ .

 $\gamma\,$  minimum final loads after distribution of the new workload L

 $\max_{x,\gamma}\gamma$ 

subject to

$$\gamma \leq p_i + x_i L, \quad \sum_i x_i = 1, \quad x_i \geq 0 \ \forall i$$



- Another LP example
- Linear algebra and indexed GAMS code
- Linear programs in standard form
- Supersize me!
- Visualization



In words:

Minimize: the cost (or calories) of eating at McDonald's

Subject to: the total amounts of food or nutrients fall between certain minimum and maximum values



#### A GAMS Model



| set | n | Nutritional needs /<br>calo Calories<br>carbo Carbohydrates<br>protein Protein<br>vita Vitamin A<br>vitc Vitamin C<br>calc Calcium<br>iron Iron /,                                               |
|-----|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | f | <pre>Foods / "Quarter Pounder w/ Cheese" "McLean Deluxe w/ Cheese" "Big Mac", "Filet-O-Fish", "McGrilled Chicken", "Fries, small", "Sausage McMuffin", "1% Lowfat Milk", "Orange Juice" /;</pre> |



#### http://nutrition.mcdonalds.com/getnutrition/nutritionfacts.pdf



#### McDonald's USA Nutrition Facts for Popular Menu Items

We provide a nutrition analysis of our menu items to help you balance your McDonald's meal with other foods you eat. Our goal is to provide you with the information you need to make sensible decisions about balance, variety and moderation in your diet.

|                                 |                    |          | Fat           |               | 1             | (B)           | 1             |               | (Bu           | ŧ,            |             | 1             | (B) si       | 1             | (6)           | ŧ.            |            |             | %         | DAIL      | VAL     | JE   |
|---------------------------------|--------------------|----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-------------|---------------|--------------|---------------|---------------|---------------|------------|-------------|-----------|-----------|---------|------|
| Nutrition Facts                 | Serving Size       | Calories | Calories from | Total Fat (g) | % Daily Value | Saturated Fat | % Daily Value | Trans Fat (g) | Cholesterol ( | % Daily Value | Sodium (mg) | % Daily Value | Carbohydrate | % Daily Value | Dietary Fiber | % Daily Value | Sugars (g) | Protein (g) | Vitamin A | Vitamin C | Calcium | Iron |
| Burgers & Sandy                 | viches             |          |               |               |               |               |               |               |               |               |             |               |              |               |               |               |            |             |           |           |         |      |
| Angus Chipotle<br>BBQ Bacon†+++ | 10.3 oz<br>(294 g) | 800      | 350           | 39            | 60            | 18            | 88            | 2             | 145           | 49            | 2020        | 84            | 66           | 22            | 4             | 14            | 16         | 45          | 10        | 2         | 25      | 35   |
|                                 |                    |          |               |               |               |               |               |               |               |               |             |               |              |               |               |               |            |             |           |           |         |      |

#### The Data

# W

#### table a(f,n) Nutritional content of foods

|                             | calo | carbo | protein | vita | vitc | calc | iron |
|-----------------------------|------|-------|---------|------|------|------|------|
| "Quarter Pounder w/ Cheese" | 510  | 34    | 28      | 15   | 6    | 30   | 20   |
| "McLean Deluxe w/ Cheese"   | 370  | 35    | 24      | 15   | 10   | 20   | 20   |
| "Big Mac"                   | 500  | 42    | 25      | 6    | 2    | 25   | 20   |
| "Filet-O-Fish"              | 370  | 38    | 14      | 2    | 0    | 15   | 10   |
| "McGrilled Chicken"         | 400  | 42    | 31      | 8    | 15   | 15   | 8    |
| "Fries, small"              | 220  | 26    | 3       | 0    | 15   | 0    | 2    |
| "Sausage McMuffin"          | 345  | 27    | 15      | 4    | 0    | 20   | 15   |
| "1% Lowfat Milk"            | 110  | 12    | 9       | 10   | 4    | 30   | 0    |
| "Orange Juice"              | 80   | 20    | 1       | 2    | 120  | 2    | 2;   |

table nutr(n,\*) Nutrient requirements

|         | min  | шах  |
|---------|------|------|
| calo    | 2000 | inf  |
| carbo   | 350  | 375  |
| protein | 55   | inf  |
| vita    | 100  | inf  |
| vitc    | 100  | inf  |
| calc    | 100  | inf  |
| iron    | 100  | inf; |
|         |      |      |

table food(f,\*) Food cost and requirements

|                             | cost | min | max  |
|-----------------------------|------|-----|------|
| "Quarter Pounder w/ Cheese" | 1.84 | 0   | inf  |
| "McLean Deluxe w/ Cheese"   | 2.19 | 0   | inf  |
| "Big Mac"                   | 1.84 | 0   | inf  |
| "Filet-O-Fish"              | 1.44 | 0   | inf  |
| "McGrilled Chicken"         | 2.29 | 0   | inf  |
| "Fries, small"              | 0.77 | 0   | inf  |
| "Sausage McMuffin"          | 1.29 | 0   | inf  |
| "1% Lowfat Milk"            | 0.6  | 0   | inf  |
| "Orange Juice"              | 0.72 | 0   | inf; |
|                             |      |     |      |

# Model Equations



| nonnegative<br>variables                                                                               | Y(n)<br>X(f)  | Nutritional content<br>Purchased quantity; |  |  |  |
|--------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------|--|--|--|
| free<br>variable                                                                                       | COST          | Total cost;                                |  |  |  |
| equations                                                                                              | ydef, objdef; |                                            |  |  |  |
| ydef(n)                                                                                                | Y(n) =e=      | = sum(f, X(f)*a(f,n));                     |  |  |  |
| objdef                                                                                                 | COST =e=      | <pre>sum(f, X(f) * food(f,"cost"));</pre>  |  |  |  |
| <pre>model mincost /ydef, objdef /;</pre>                                                              |               |                                            |  |  |  |
| Y.LO(n) = nutr(n,"min"); Y.UP(n) = nutr(n,"max");<br>X.LO(f) = food(f,"min"); X.UP(f) = food(f,"max"); |               |                                            |  |  |  |



solve mincost using lp minimizing COST;

\* Generate reports of the menu and diet:

```
parameter menu Resulting menu,;
menu("Cost","MinCost") = COST.L;
menu("Calories","MinCost") = Y.L("calo");
menu("ModelStat","MinCost") = mincost.modelstat;
menu("solvestat","MinCost") = mincost.solvestat;
menu(f,"MinCost") = X.L(f);
display menu;
```



|                           | MinCost  |
|---------------------------|----------|
| Cost                      | 14.856   |
| Calories                  | 3965.369 |
| Quarter Pounder w/ Cheese | 4.385    |
| Fries, small              | 6.148    |
| 1% Lowfat Milk            | 3.422    |

Cheap, but 4000 calories!



Put an upper bound on calories.

```
Y.UP("calo") = 2500;
solve mincost using lp minimizing COST;
```

Calories are down, cost is up and the diet looks better.

|                           | MinCost  | Cal2500  |
|---------------------------|----------|----------|
| Cost                      | 14.856   | 16.671   |
| Calories                  | 3965.369 | 2500.000 |
| Quarter Pounder w/ Cheese | 4.385    | 0.232    |
| McLean Deluxe w/ Cheese   |          | 3.855    |
| Fries, small              | 6.148    |          |
| 1% Lowfat Milk            | 3.422    | 2.043    |
| Orange Juice              |          | 9.134    |

## Third Run



Try for a 2000 calorie diet.

```
Y.UP("calo") = 2000;
solve mincost using lp minimizing COST;
```

Not possible!

| MODEL  | mincost | OBJECTIVE | С        |
|--------|---------|-----------|----------|
| TYPE   | LP      | DIRECTION | MINIMIZE |
| SOLVER | CPLEX   | FROM LINE | 121      |

| **** | SOLVER STATUS   | 1 Normal Completion |
|------|-----------------|---------------------|
| **** | MODEL STATUS    | 4 Infeasible        |
| **** | OBJECTIVE VALUE | 0.9121              |

# Minimize calories, ignoring cost.



| variable            | CALO             | Objecti     | ve value  | calories;    |
|---------------------|------------------|-------------|-----------|--------------|
| equation            | objcalo          | Objecti     | ve minimi | ze calories; |
|                     |                  |             |           |              |
| objcalo             | CALO =e= Y("     | calo");     |           |              |
|                     |                  |             |           |              |
| model mincal /yo    | lef, objdef,     | objcalo/;   |           |              |
|                     |                  |             |           |              |
| solve mincal us:    | ing lp minimi    | zing CALO;  |           |              |
| Minimum calories is | s 2467 at a cost | of \$16.75: |           |              |
|                     |                  | MinCost     | Cal2500   | MinCal       |
| Cost                |                  | 14.856      | 16.671    | 16.745       |
| Calories            |                  | 3965.369    | 2500.000  | 2466.981     |
| Quarter Pounder     | w/ Cheese        | 4.385       | 0.232     |              |
| McLean Deluxe w     | / Cheese         |             | 3.855     | 4.088        |
| Fries, small        |                  | 6.148       |           |              |
| 1% Lowfat Milk      |                  | 3.422       | 2.043     | 2.044        |
| Orange Juice        |                  |             | 9.134     | 9.119        |



X.UP(f) = 2; solve mincost using lp minimizing COST;

More intersting cuisine. Cost is up a bit, calories are down relative to original solution.

|                           | MinCost  | MinCal   | MinCostV |
|---------------------------|----------|----------|----------|
| Cost                      | 14.856   | 16.745   | 16.766   |
| Calories                  | 3965.369 | 2466.981 | 3798.077 |
| Quarter Pounder w/ Cheese | 4.385    |          | 2.000    |
| McLean Deluxe w/ Cheese   |          | 4.088    | 2.000    |
| Big Mac                   |          |          | 2.000    |
| Fries, small              | 6.148    |          | 1.423    |
| Sausage McMuffin          |          |          | 1.000    |
| 1% Lowfat Milk            | 3.422    | 2.044    | 2.000    |
| Orange Juice              |          | 9.119    | 2.000    |



#### X.UP(f) = 2; solve mincal using lp minimizing COST;

#### Almost 3500 calories. Wow!

|                           | MinCost  | MinCal   | MinCostV | MinCalV  |
|---------------------------|----------|----------|----------|----------|
| Cost                      | 14.856   | 16.745   | 16.766   | 17.248   |
| Calories                  | 3965.369 | 2466.981 | 3798.077 | 3488.287 |
| Quarter Pounder w/ Cheese | 4.385    |          | 2.000    | 1.952    |
| McLean Deluxe w/ Cheese   |          | 4.088    | 2.000    | 2.000    |
| Big Mac                   |          |          | 2.000    |          |
| Filet-O-Fish              |          |          |          | 0.359    |
| McGrilled Chicken         |          |          |          | 2.000    |
| Fries, small              | 6.148    |          | 1.423    | 2.000    |
| Sausage McMuffin          |          |          | 1.000    |          |
| 1% Lowfat Milk            | 3.422    | 2.044    | 2.000    | 2.000    |
| Orange Juice              |          | 9.119    | 2.000    | 2.000    |

## Whole Numbers Solution



Move from linear program (LP) to mixed integer programming (MIP).

```
integer variable XI(f) Food purchase;
equation xidef; xidef(f).. X(f) === XI(f);
```

```
XI.LO(f) = 0; XI.UP(f) = 2;
```

model integerdiet /ydef, objdef, objcalo, xidef /; solve integerdiet using MIP minimizing CALO;

This only makes a small increase in price and calories.

|                           | MinCost  | MinCal   | MinCostV | MinCalV  | MinCalInt |
|---------------------------|----------|----------|----------|----------|-----------|
| Cost                      | 14.856   | 16.745   | 16.766   | 17.248   | 17.490    |
| ModelStat                 | 1.000    | 1.000    | 1.000    | 1.000    | 1.000     |
| SolveStat                 | 1.000    | 1.000    | 1.000    | 1.000    | 1.000     |
| Quarter Pounder w/ Cheese | 4.385    |          | 2.000    | 1.952    | 2.000     |
| McLean Deluxe w/ Cheese   |          | 4.088    | 2.000    | 2.000    | 2.000     |
| Big Mac                   |          |          | 2.000    |          |           |
| Filet-O-Fish              |          |          |          | 0.359    | 1.000     |
| McGrilled Chicken         |          |          |          | 2.000    | 2.000     |
| Fries, small              | 6.148    |          | 1.423    | 2.000    | 1.000     |
| Sausage McMuffin          |          |          | 1.000    |          |           |
| 1% Lowfat Milk            | 3.422    | 2.044    | 2.000    | 2.000    | 2.000     |
| Orange Juice              |          | 9.119    | 2.000    | 2.000    | 2.000     |
| Calories                  | 3965.369 | 2466.981 | 3798.077 | 3488.287 | 3530.000  |

# Ŵ

Include a set definition to sequence rows in the report – the *universal element list*:

| <pre>set seq /Cost, Calo, ModelStat, SolveStat/;</pre> |          |          |          |  |
|--------------------------------------------------------|----------|----------|----------|--|
|                                                        | MinCost  | Cal2500  | Cal2000  |  |
| Cost                                                   | 14.856   | 16.671   | 17.796   |  |
| Calo                                                   | 3965.369 | 2500.000 | 2000.000 |  |
| ModelStat                                              | 1.000    | 1.000    | 4.000    |  |
| SolveStat                                              | 1.000    | 1.000    | 1.000    |  |
|                                                        |          |          |          |  |

## Some GAMS Program Details



Uses a *batinclude subroutine* to add scenario results to the report parameters menu and diet:

```
parameter menu Resulting menu,
                diet Resulting diet;
$onechov >%gams.scrdir%report.gms
menu("Cost", "%1") = C.L;
menu("Calories","%1") = Y.L("calo");
menu("ModelStat","%1") = mincost.modelstat;
menu("solvestat","%1") = mincost.solvestat;
menu(f, "%1") = X.L(f);
diet("Cost","%1") = C.L:
diet("ModelStat","%1") = mincost.modelstat;
diet("SolveStat", "%1") = mincost.solvestat;
diet(n, "%1") = Y.L(n);
$offecho
        Define an environment variable to label the report:
solve mincost using lp minimizing COST;
$batinclude %gams.scrdir%report MinCost
```

W

Compute the integer programming solution by introducing an integer variable and assigning it to the LP decision variable. All variables and equations from the LP remain in the model so reporting routine is unchanged!

```
integer variable XI(f) Food purchase;
equation xidef;
xidef(f).. X(f) === XI(f);
XI.LO(f) = 0;
XI.UP(f) = 2;
model integerdiet /ydef, objdef, objcalo, xidef /;
solve integerdiet using MIP minimizing CAL;
```



- Another LP example
- Linear algebra and indexed GAMS code
- Linear programs in standard form
- Supersize me!
- Visualization



subject to:

 $\max_{x,y} 120x + 90y$   $4x + 2y \le 4800$   $x + y \le 1750$   $0 \le x \le 1000$   $0 \le y \le 1500$ 

In which:

- x : number of batches of lager produced
- y : number of batches of ales produced

#### Visualization: Scatter Plots in Excel





## Visualization: GNUPLOT





X axis

3d Hyperplane (alpha= 0.20, beta= 0.50)



Z axis

55 / 59

## Visualization: GNUPLOT





## **GNUPLOT** Command File



```
#
        Begin with a reset so we can make changes and immediately reload:
reset
#
        Define parameters are user-defined GNUPLOT variables:
maltg=4800
veastg=1750
maltx=4
maltv=2
profitx=12
profity=9
        Calculate the optimum, assuming that it is where the yeast
#
        and malt constraints are both binding:
#
xmax=(maltg-malty*veastg)/(maltx-malty)
vmax=veastg-xmax
maxprofit=xmax*profitx+ymax*profity
        Calculate points where the hops constraints intersect
#
        the yeast and malt constraints:
#
xlim = veastg-1500
ylim = (maltq-maltx*1000)/malty
set style arrow 1 nohead linecolor rgb "gray" linewidth 2 dashtype solid
set arrow 1 from 1000,0,0 to 1000,ylim,0 arrowstyle 1
set arrow 2 from 0.1500.0 to xlim.1500.0 arrowstyle 1
```

## GNUPLOT Command File (cont)

# Define linear functions representing the yeast and malt
# constraints as well as the isoprofit line at the optimal
# point:
yeast(x)=yeastq-x
malt(x)=(maltq-maltx\*x)/malty
isoprofit(x) = ymax-profitx\*(x-xmax)/profity

# Set up axes:

```
set xrange [0:1500]
set yrange [0:2500]
set ylabel 'batches of ale (y)' offset -1,0
set xlabel 'batches lager (x)' offset 0,-1
set xtics axis
set ytics axis
unset border
set arrow 3 from 0,0 to 1450,0 linestyle 1
set arrow 4 from 0,0 to 0,2550 linestyle 1
```

# Label the feasible region:

set label "feasible region" at 200,500

# Put a black circle at the optimum:

```
optimum = sprintf('(%.f,%.f)',xmax,ymax)
set label optimum at xmax+30,ymax+30
set object circle at xmax,ymax front size 6 \
    fillstyle solid 1 fillcolor rgb "black"
```



```
W
```

```
#
        Generate a data file with extreme points of the feasible region:
set print "feasible.dat"
print sprintf('%.f %.f',0,0)
print sprintf('%.f %.f',0,1500)
print sprintf('%.f %.f',xlim, 1500)
print sprintf('%.f %.f'.xmax, vmax)
print sprintf('%.f %.f',1000, vlim)
print sprintf('%.f %.f',1000, 0)
unset print
        Define the style to be used for "filledcurves" to denote the
#
        feasible region:
#
set style fill transparent solid 0.2 noborder
set style line 1 linecolor "black" linewidth 2 dashtype 1
set style line 2 linecolor "forest-green" linewidth 2 dashtype 1
set style line 3 linecolor "red" linewidth 2 dashtype 2
plot yeast(x) ls 1, malt(x) ls 2, isoprofit(x) ls 3, \setminus
      'feasible.dat' using 1:2 with filledcurves below notitle
```