AAE 526: More Linear Programming

Thomas F. Rutherford

Fall Semester, 2019
Department of Agricultural and Applied Economics
University of Wisconsin, Madison
September 9, 2019

Outline

- Another LP example
- Linear algebra and indexed GAMS code
- Linear programs in standard form
- Supersize me!
- Visualization

Another Tiny LP

The Wyndor Glass Co. produces high-quality glass products, including windows and glass doors. It has three plants. Aluminum frames and hardware are made in Plant 1, wood frames are made in Plant 2 and Plant 3 cuts the glass and assembles the products.
Profits are 3 for product 1 and 5 per unit of product 2 .
Because of declining earnings, top management has decided to revamp the product line. Unprofitable products are to be discontinued, and product capacity will be reassigned to launch two new products.

Describe Constraints

The data indicates that each batch of product 1 produced per week uses 1 hour of production time per week in Plant 1, whereas only 4 hours per week are available. The restriction is written mathematically as

$$
x_{1} \leq 4
$$

Similarly, Plant 2 imposes the restriction

$$
2 x_{2} \leq 12
$$

The number of hours of production time used per week in Plant 3 given x_{1} and x_{2} is $3 x_{1}+2 x_{2}$ (3 hours of production per batch of good 1 and 2 hours per batch of good 2). The available capacity in Plant 3 provides the constraint:

$$
3 x_{1}+2 x_{2} \leq 18
$$

Finally, production rates cannot be negative, so it is necessary to impose restrictions $x_{1} \geq 0$ and $x_{2} \geq 0$

Write Down an Algebraic Formulation

$$
\max Z=3 x_{1}+5 x_{2}
$$

subject to the restrictions

$$
\begin{array}{rll}
x_{1} & & \leq 4 \\
& 2 x_{2} & \leq 12 \\
3 x_{1} & +2 x_{2} & \leq 18
\end{array}
$$

and

$$
x_{1} \geq 0, x_{2} \geq 0
$$

IIE gamside: D:\newproject.gpr - [d:\Optimization\lectures\Lecture2\wyndor.gms]

IIIE File Edit Search Windows Utilities Model Libraries Help

wyndor.gms

```
VARIABLES
    Z Objective function ($1000 per week)
    X1 Glass doors (batches per week)
    X2 Wood framed windows (batches per week);
EQUATIONS
    Zdef Defines the objective function
    plant1 Constraint imposed by plant 1
    plant2 Constraint imposed by plant 2
    plant3 Constraint imposed by plant 3;
zdef.. Z =E= 3*X1 + 5*X2;
plant1..
    X1 =L= 4;
plant2.. 2*X2 =L= 12;
plant3.. 3*X1 + 2*X2 =L= 18;
MODEL wyndor /zdef, plant1, plant2, plant3/;
SOLVE wyndor USING LP MAXIMIZING Z;
```


Graphical Solution: for Two Variable Problems

This problem has only two dimensions, so a graphical procedure can be employed. We use label the axes as x_{1} and x_{2}. The first step is then to identify on the graph values of (x_{1}, x_{2}) which are feasible (consistent with the restrictions).

Upper and Lower Bounds

Values of $\left(x_{1}, x_{2}\right)$ consistent with the constraints $0 \leq x_{1} \leq 4$ and $0 \leq x_{2}$:

The Feasible Region

Solution

The optimal solution is $x_{1}^{*}=2, x_{2}^{*}=6$ with $Z^{*}=36$. This implies 2 batches of product 1 and 6 batches of product 2 will be produced per week, providing a total profit of $\$ 36,000$ per week.

Outline

- Another LP example
- Linear algebra and indexed GAMS code
- Linear programs in standard form
- Supersize me!
- Visualization

Most Practical GAMS Models are Indexed

```
$TITLE Brewery Profit Maximization
set j Products /lager, ale/
i Ingredients /
malt Malt,
    yeast Yeast,
    dehops German hops,
    wihops Wisconsin hops/;
parameter
    p(j) Profit by product /lager 12, ale 9/
    s(i) Supply by ingredient /malt 4800, yeast 1750,
        dehops 1000, wihops 1750/;
table
    a(i,j) Requirements
    lager ale
    malt 4
    yeast 1
    dehops 1 0
    wihops 0 1;
```


GAMS Models are Indexed (cont.)

```
variables Y(j) Production levels,
Z Profit (maximand);
nonnegative variable Y;
equations supply(i) Ingredient supply
    profit Defines Z;
supply(i).. sum(j, a(i,j)*Y(j)) =L= s(i);
profit.. Z =E= sum(j, p(j)*Y(j));
MODEL BREWERY /supply, profit/;
solve BREWERY using LP maximizing Z;
```


Matrix basics

A matrix is an array of numbers. $A \in \mathrm{R}^{m \times n}$.

$$
A=\left[\begin{array}{llr}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]
$$

which has m rows and n columns.
The table statement in GAMS can be used to define a matrix:

$\begin{array}{ll} \text { set } \quad \text { i } \\ & j \end{array}$	Row indices /1*3/, Column indice /1*2/;
table a(i, j)	Matrix with three rows and two columns 12
1	0.2312 .3
2	-0.1 2.4
3	3.20 .1 ;

Table versus Parameter

A matrix may be specified either the table or parameter statement:

```
set i Row indices /1*3/,
    j Column indice /a,b/;
table a(i,j) Matrix with three rows and two columns
    a b
    1 0.23 12.3
    2 -0.1 2.4
    3.2 0.1;
parameter b(i,j) The same matrix in database format /
    1.a 0.23
    2.a -0.1
    3.a 3.2
    1.b 12.3
    2.b 2.4
    3.b 0.1 /;
parameter c(i,j) Check that a=b; c(i,j) = a(i,j) - b(i,j); display c;
---- 22 PARAMETER c check that a=b
    ( ALL 0.000 )
```


Matrix Multiplication

Two matrices can be multiplied if their inner dimensions agree. In matrix notation (MATLAB style):

$$
\underbrace{C}_{(m \times p)}=\underbrace{A}_{(m \times n)} \underbrace{B}_{(n \times p)}
$$

In detached coefficient notation (GAMS style) we write:

$$
c_{i j}=\sum_{k} a_{i k} b_{k j}
$$

In GAMS syntax, we have:

$$
c(i, j)=\operatorname{sum}(k, a(i, k) * b(k, j)) ;
$$

Transposition

- The transpose operator A^{T} swaps rows and columns. If $A \in \mathrm{R}^{m \times n}$, then $A^{T} \in \mathrm{R}^{n \times m}$ and $\left(A^{T}\right)_{i j}=A_{j i}$
- It follows that:

$$
\begin{aligned}
& \left(A^{T}\right)^{T}=A \\
& (A B)^{T}=B^{T} A^{T}
\end{aligned}
$$

Linear and affine functions

- A function $f\left(x_{1}, \ldots, x_{m}\right)$ is linear in the variables x_{1}, \ldots, x_{m} if there exists constants a_{1}, \ldots, a_{m} such that

$$
f\left(x_{1}, \ldots, x_{m}\right)=a_{1} x_{1}+\ldots+a_{m} x_{m}=\sum_{i} a_{i} x_{i}=a^{T} x
$$

- A function $f\left(x_{1}, \ldots, x_{m}\right)$ is affine in the variables x_{1}, \ldots, x_{m} if there exists constants b, a_{1}, \ldots, a_{m} such that

$$
f\left(x_{1}, \ldots, x_{m}\right)=b a_{1} x_{1}+\ldots+a_{m} x_{m}=b+\sum_{i} a_{i} x_{i}=b+a^{T} x
$$

- Examples:
(1) $3 x-y$ is linear in (x, y).
(2) $2 x y+1$ is affine in x and y, but not in (x, y).
(3) $x^{2}+y^{2}$ is neither linear nor affine.

Linear and affine functions (cont.)

Several linear or affine functions can be combined:

$$
\begin{array}{cll}
a_{11} x_{1} & +\ldots & +a_{1 n} x_{n}+b_{1} \\
a_{21} x_{1} & +\ldots & +a_{2 n} x_{n}+b_{2} \\
& \vdots & \vdots \\
a_{m 1} x_{1} & +\ldots & +a_{m n} x_{n}+b_{m}
\end{array} \Rightarrow\left[\begin{array}{llr}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]
$$

which can be written simply as $A x+b$. Same definitions apply:

- A vector-valued function $F(x)$ is linear in x if there exists a constant matrix A such that $F(x)=A x$.
- A vector-valued function $F(x)$ is affine in x if there exists a constant matrix A and vector b such that $F(x)=A x+b$.

Matrix basics: inner and outer products

A vector is a column matrix. We write $x \in \mathrm{R}^{n}$ to mean that

$$
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

This is an $n \times 1$ matrix.
Two vectors $x, y \in \mathrm{R}^{n}$ can be multiplied together in two ways. Both are valid matrix multiplications:

- inner product: produces a scalar, $x^{T} y=x_{1} y_{1}+\cdots+x_{n} y_{n}$.
- outer product: produces an $n \times n$ matrix.

$$
x y^{T}=\left[\begin{array}{llr}
x_{1} y_{1} & \cdots & x_{1} y_{n} \\
\vdots & \ddots & \vdots \\
x_{n} y_{1} & \cdots & x_{n} y_{n}
\end{array}\right]
$$

Calculating Inner and Outer Products in GAMS

```
set i/i1*i3/;
parameter x(i), y(i), xy, xyt(i,i);
* Generate two random arrays containing values
* between zero and one:
x(i) = uniform(0,1); y(i) = uniform(0,1);
* Inner product:
xy = sum(i, x(i)*y(i));
* Need a second symbol to refer to the set i:
alias (i,j);
* Outer product:
xyt(i,j) = x(i)*y(j);
display x, y, xy, xyt;
```


Calculating Inner and Outer Products in GAMS

```
---- 23 PARAMETER x
i1 0.172, i2 0.843, i3 0.550
---- 23 PARAMETER y
i1 0.301, i2 0.292, i3 0.224
\begin{tabular}{lcrr}
---- & 23 PARAMETER xy \\
---- & 23 PARAMETER xyt & \\
& i1 & i2 & i3 \\
& & & \\
i1 & 0.052 & 0.050 & 0.038 \\
i2 & 0.254 & 0.246 & 0.189 \\
i3 & 0.166 & 0.161 & 0.123
\end{tabular}
```


Outline

- Another LP example
- Linear algebra and indexed GAMS code
- Linear programs in standard form
- Supersize me!
- Visualization

The linear program

A linear program is an optimization model with:

- real-valued variables $\left(x \in \mathrm{R}^{n}\right)$
- linear cost function $\left(c^{T} x\right)$
- constraints may be:
- affine equations $(A x=b)$
- affine inequalities ($A x \leq b$ or $A x \geq b$)
- combinations of the above
- individual variables may have:
- bounds ($p \leq x_{i}$, or $x_{i} \leq q$, or $p \leq x_{i} \leq q$)
- no bounds (x_{i} is unconstrained)

There are many equivalent representations of any linear program.

Linear Programming

Standard Form:

$$
\begin{array}{rlr}
\operatorname{maximize} & c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} & \\
\text { subject to } & a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & \leq b_{2} \\
& \vdots & \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & \leq b_{m} \\
& x_{1}, x_{2}, \ldots, x_{n} & \geq 0
\end{array}
$$

Why it's hard:

- Lots of variables (n of them)
- Lots of boundaries to check (the inequalities)

Why it's not impossible:

- All expressions are linear

Solutions of a Linear Program

For any given linear programming problem, exactly one of the following statements applies:

1. The model is infeasible: there is no x that satisfies all the constraints. (is the model correct?)
2. The model is feasible, but unbounded: the cost function can be arbitrarily improved. (forgot a constraint?)
3. Model has a solution which occurs on the boundary of the feasible polyhdron. Note that there is no guarantee that the solution is unique there may be many solutions!

infeasible

unbounded

boundary

Standard Form

- Every linear program can be put into the form:

$$
\max _{z \in \mathrm{R}^{n}} c^{\top} z
$$

subject to:

$$
\begin{gathered}
A z \leq b \\
z \geq 0
\end{gathered}
$$

- This is call the standard form of a linear program.

Brewery Profit: Standard Form

$$
\begin{array}{lll}
\max _{x, y} & 120 x+90 y & \\
\text { s.t.: } & 4 x+2 y & \leq 4800 \\
& x+y & \leq 1750 \\
0 \leq x \leq 1000, \quad 0 \leq y \leq 1500
\end{array}
$$

is equivalent to:

$$
\begin{gathered}
\max _{x, y}\left[\begin{array}{c}
120 \\
90
\end{array}\right]^{T}\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
\text { s.t. } \quad\left[\begin{array}{cc}
4 & 2 \\
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \leq\left[\begin{array}{l}
4800 \\
1750 \\
1000 \\
1500
\end{array}\right] \\
x, y \geq 0
\end{gathered}
$$

Hence, our brewery profit maximization model can be transformed into standard inequality form with the assignments:

$$
\begin{aligned}
& z=\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad c=\left[\begin{array}{c}
120 \\
90
\end{array}\right] \\
& A=\left[\begin{array}{ll}
4 & 2 \\
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right] \quad b=\left[\begin{array}{l}
4800 \\
1750 \\
1000 \\
1500
\end{array}\right]
\end{aligned}
$$

Applications of Linear Programming

A partial list, taken from Ferris et al., Chapter 1:

- Resoure allocation
- The diet problem
- Linear surface fitting
- Load balancing
- Classification
- Minimum cost network flow
...

Resource Allocation

A company has m products which are produced with n resources. The value of product i is c_{i}, while each unit of resource j costs d_{j} dollars. One unit of product i requires $a_{i j}$ units of resource j, and a maximum of b_{j} units of resource j are available:

$$
\max _{x, y} z=\sum_{i} c_{i} y_{i}-\sum_{j} d_{j} x_{j}
$$

subject to

$$
x_{j}=\sum_{i} a_{i j} y_{i}, \quad x_{j} \leq b_{j}, \quad x_{j} \geq 0, y_{i} \geq 0
$$

Note that the constraints can be written in detached coefficient form as:

$$
x_{j}=\sum_{i} a_{i j} y_{i}=a_{1 j} y_{1}+a_{2 j} y_{2}+\ldots+a_{m j} y_{m}
$$

The Diet Problem

Given the prices p_{j} of food type j, the content of nutrient i in food $j\left(a_{i j}\right)$ and the dietary requirement of nutrient i, b_{i}, solve:

$$
\min _{x} z=\sum_{j} p_{j} x_{j}
$$

subject to

$$
\begin{gathered}
\sum_{j} a_{i j} x_{j} \geq b_{i}, \quad \forall i \\
x_{j} \geq 0
\end{gathered}
$$

Linear Surface Fitting

Given a set of observations $A=\left[a_{i j}\right]$ and b_{i}. Find weights on the columns of A and a scalar constant γ which best "predicts" the value of b on the basis of observations $a_{i j}$, assuming a linear model:

$$
\min _{x, \gamma} \sum_{i=1}^{m}\left|\sum_{j} a_{i j} x_{j}+\gamma-b_{i}\right|
$$

or, equivalently

$$
\min _{x, \gamma, y} z=\sum_{i} y_{i}
$$

subject to

$$
-y_{i} \leq \sum_{j} a_{i j} x_{j}+\gamma-b_{i} \leq y_{i}
$$

Note that the constraint ensures that each y_{i} is no smaller than the absolute value $\left|\sum_{j} a_{i j} x_{j}+\gamma-b_{i}\right|$.

Load Balancing

Balance computational work among n processors, distributing the load in such a way that the lightest-loaded processor has as heavy a load as possible:
p_{i} Current load of processor $i=1,2, \ldots, n$
L Total load to be distributed
x_{i} Fraction of additional load L to be distributed to processor i, with $x_{i} \geq 0$ and $\sum_{i} x_{i}=1$.
γ minimum final loads after distribution of the new workload L

$$
\max _{x, \gamma} \gamma
$$

subject to

$$
\gamma \leq p_{i}+x_{i} L, \quad \sum_{i} x_{i}=1, \quad x_{i} \geq 0 \forall i
$$

Outline

- Another LP example
- Linear algebra and indexed GAMS code
- Linear programs in standard form
- Supersize me!
- Visualization

The McDonald's Diet Problem

In words:
Minimize: the cost (or calories) of eating at McDonald's

Subject to: the total amounts of food or nutrients fall between certain minimum and maximum values

A GAMS Model

Source Data

http://nutrition.mcdonalds.com/getnutrition/nutritionfacts.pdf

M

 McDonald's USA Nutrition Facts for Popular Menu ItemsWe provide a nutrition analysis of our menu items to help you balance your McDonald's meal with other foods you eat. Our goal is to provide you with the information you need to make sensible decisions about balance, variety and moderation in your diet.

The Data

table $\mathrm{a}(\mathrm{f}, \mathrm{n}) \quad$ Nutritional	$\begin{gathered} \text { tent } \\ \text { calo } \end{gathered}$	foods carbo	protein	vita	vitc	calc	iron
"Quarter Pounder w/ Cheese"	510	34	28	15	6	30	20
"McLean Deluxe w/ Cheese"	370	35	24	15	10	20	20
"Big Mac"	500	42	25	6	2	25	20
"Filet-0-Fish"	370	38	14	2	0	15	10
"McGrilled Chicken"	400	42	31	8	15	15	8
"Fries, small"	220	26	3	0	15	0	2
"Sausage McMuffin"	345	27	15	4	0	20	15
"1\% Lowfat Milk"	110	12	9	10	4	30	0
"Orange Juice"	80	20	1	2	120	2	2;
$\begin{array}{cl} \text { table nutr }(\mathrm{n}, *) & \text { Nutrient req } \\ \min & \max \end{array}$	ements						
calo 2000 inf							
carbo 350375							
protein 55 inf							
vita 100 inf							
vitc 100 inf							
calc 100 inf							
iron 100 inf;							
table food(f,*) Food cost and requirements							
	cost	min	max				
"Quarter Pounder w/ Cheese"	1.84	0	inf				
"McLean Deluxe w/ Cheese"	2.19	0	inf				
"Big Mac"	1.84	0	inf				
"Filet-0-Fish"	1.44	0	inf				
"McGrilled Chicken"	2.29	0	inf				
"Fries, small"	0.77	0	inf				
"Sausage McMuffin"	1.29	0	inf				
"1\% Lowfat Milk"	0.6	0	inf				
"Orange Juice"	0.72	0	inf;				

Model Equations

```
nonnegative
variables
Y(n) Nutritional content
X(f) Purchased quantity;
free
variable COST Total cost;
equations ydef, objdef;
ydef(n)..
Y(n) =e= sum(f, X(f)*a(f,n));
objdef.. COST =e= sum(f, X(f) * food(f,"cost"));
model mincost /ydef, objdef /;
Y.LO(n) = nutr(n,"min"); Y.UP(n) = nutr(n,"max");
X.LO(f) = food(f,"min"); X.UP(f) = food(f,"max");
```


First Run

```
solve mincost using lp minimizing COST;
* Generate reports of the menu and diet:
parameter menu Resulting menu,;
menu("Cost","MinCost") = COST.L;
menu("Calories","MinCost") = Y.L("calo");
menu("ModelStat","MinCost") = mincost.modelstat;
menu("solvestat","MinCost") = mincost.solvestat;
menu(f,"MinCost") = X.L(f);
display menu;
```


First Run

	MinCost	
Cost	14.856	Cheap, but
Calories	3965.369	4000 calories!
Quarter Pounder w/ Cheese	4.385	
Fries, small	6.148	
1\% Lowfat Milk	3.422	

Second Run

Put an upper bound on calories.

```
Y.UP("calo") = 2500;
solve mincost using lp minimizing COST;
```

Calories are down, cost is up and the diet looks better.

	MinCost	Cal2500
Cost	14.856	16.671
Calories	3965.369	2500.000
Quarter Pounder w/ Cheese	4.385	0.232
McLean Deluxe w/ Cheese		3.855
Fries, small	6.148	
1\% Lowfat Milk	3.422	2.043
Orange Juice		9.134

Third Run

Try for a 2000 calorie diet.
Y.UP("calo") = 2000;
solve mincost using lp minimizing COST;
Not possible!

MODEL	mincost
TYPE	LP
SOLVER	CPLEX

OBJECTIVE C
DIRECTION MINIMIZE
FROM LINE 121
**** SOLVER STATUS
**** MODEL STATUS
**** OBJECTIVE VALUE

1 Normal Completion
4 Infeasible
0.9121

Minimize calories, ignoring cost.

```
variable
equation
```

CALO objcalo

Objective value -- calories;
Objective -- minimize calories;

CALO =e= Y("calo");

```
CALO =e= Y("calo");
```

model mincal /ydef, objdef, objcalo/;
solve mincal using lp minimizing CALO;

Minimum calories is 2467 at a cost of $\$ 16.75$:

Cost
Calories
Quarter Pounder w/ Cheese
McLean Deluxe w/ Cheese
Fries, small
1\% Lowfat Milk
Orange Juice

MinCost	Cal2500	MinCal
14.856	16.671	16.745
3965.369	2500.000	2466.981
4.385	0.232	
	3.855	4.088
6.148		
3.422	2.043	2.044
	9.134	9.119

Add some variety

X.UP(f) $=2$;
solve mincost using lp minimizing COST;
More intersting cuisine. Cost is up a bit, calories are down relative to original solution.

	MinCost	MinCal	MinCostV
Cost	14.856	16.745	16.766
Calories	3965.369	2466.981	3798.077
Quarter Pounder w/ Cheese	4.385		2.000
McLean Deluxe w/ Cheese		4.088	2.000
Big Mac			2.000
Fries, small	6.148		1.423
Sausage McMuffin			1.000
1\% Lowfat Milk	3.422	2.044	2.000
Orange Juice		9.119	2.000

Keep variety but minimize calories

```
X.UP(f) = 2;
solve mincal using lp minimizing COST;
```

Almost 3500 calories. Wow!
Cost
Calories
Quarter Pounder w/ Cheese
McLean Deluxe w/ Cheese
Big Mac
Filet-0-Fish
McGrilled Chicken
Fries, small
Sausage McMuffin
1\% Lowfat Milk
Orange Juice

MinCost	MinCal	MinCostV	MinCalV
14.856	16.745	16.766	17.248
3965.369	2466.981	3798.077	3488.287
4.385		2.000	1.952
	4.088	2.000	2.000
		2.000	
			0.359
6.148			2.000
		1.423	2.000
3.422	2.044	1.000	
	9.119	2.000	2.000
		2.000	2.000

Whole Numbers Solution

Move from linear program (LP) to mixed integer programming (MIP).
integer variable XI(f) Food purchase; equation xidef; xidef(f).. X(f) =e= XI(f);
XI.LO(f) = 0; XI.UP(f) = 2;
model integerdiet /ydef, objdef, objcalo, xidef /; solve integerdiet using MIP minimizing CALO;

This only makes a small increase in price and calories.

	MinCost	MinCal	MinCostV	MinCalV	MinCalInt
Cost	14.856	16.745	16.766	17.248	17.490
ModelStat	1.000	1.000	1.000	1.000	1.000
SolveStat	1.000	1.000	1.000	1.000	1.000
Quarter Pounder w/ Cheese	4.385		2.000	1.952	2.000
McLean Deluxe w/ Cheese		4.088	2.000	2.000	2.000
Big Mac			2.000		
Filet-O-Fish				0.359	1.000
McGrilled Chicken			1.423	2.000	2.000
Fries, small	6.148			1.000	
Sausage McMuffin	3.422	2.044	2.000	2.000	2.000
1\% Lowfat Milk		9.119	2.000	2.000	2.000
Orange Juice	3965.369	2466.981	3798.077	3488.287	3530.000
Calories					

Some GAMS Program Details

Include a set definition to sequence rows in the report - the universal element list:

set seq /Cost, Calo, ModelStat, SolveStat/;			
MinCost	Cal2500	Cal2000	\ldots
Cost	14.856	16.671	17.796
Calo	3965.369	2500.000	2000.000
ModelStat	1.000	1.000	4.000
SolveStat	1.000	1.000	1.000
\ldots			

Some GAMS Program Details

Uses a batinclude subroutine to add scenario results to the report parameters menu and diet:

```
parameter menu Resulting menu,
    diet Resulting diet;
$onechov >%gams.scrdir%report.gms
menu("Cost","%1") = C.L;
menu("Calories","%1") = Y.L("calo");
menu("ModelStat","%1") = mincost.modelstat;
menu("solvestat","%1") = mincost.solvestat;
menu(f,"%1") = X.L(f);
diet("Cost","%1") = C.L;
diet("ModelStat","%1") = mincost.modelstat;
diet("SolveStat","%1") = mincost.solvestat;
diet(n,"%1") = Y.L(n);
$offecho
* Define an environment variable to label the report:
solve mincost using lp minimizing COST;
$batinclude %gams.scrdir%report MinCost
```


Some GAMS Program Details

Compute the integer programming solution by introducing an integer variable and assigning it to the LP decision variable. All variables and equations from the LP remain in the model so reporting routine is unchanged!

```
integer variable XI(f) Food purchase;
equation xidef;
xidef(f).. X(f) =e= XI(f);
XI.LO(f) = 0;
XI.UP(f) = 2;
model integerdiet /ydef, objdef, objcalo, xidef /;
solve integerdiet using MIP minimizing CAL;
```


Outline

- Another LP example
- Linear algebra and indexed GAMS code
- Linear programs in standard form
- Supersize me!
- Visualization

Recall the Brewery Profit Model

$$
\max _{x, y} 120 x+90 y
$$

subject to:

$$
\begin{gathered}
4 x+2 y \leq 4800 \\
x+y \leq 1750 \\
0 \leq x \leq 1000 \\
0 \leq y \leq 1500
\end{gathered}
$$

In which:
x : number of batches of lager produced
y : number of batches of ales produced

Visualization: Scatter Plots in Excel

		Value	Scale	
Quantity of malt on hand	malta	4800	1	
Quantity of yeast on hand	yeasta	1750	1	
Malt requirements -- lager	maltx	4	1	
Malt requirements -- ale	malty	2	1	
Unit profit - lager	profitx	12	1	
Unit profit - ale	profity	9	1	
Isoprofit	isoprofit	17700	1	
Maximum Profit	maxprofit	17700		
	\times	y	formula ${ }^{\text {a }}$]	formula(y)
WI Hops	0	1500	0	1500
	250	1500	Freasta-1500	1500
DE Hops	1000	0	1000	-
	1000	400	1000	
Malt	1200	0	$=\mathrm{malta} / \mathrm{maltx}$	0
	0	2400	0	=malit/malty
Yeast	0	1750		Freasta
	1750	0	-ressta	\bigcirc
Isoprofit	1475	0	Assoprofitifprotite	\Rightarrow
	0	1966.666667	0	=150profitipratity
Optimum	650	1100	$=\mid$ malta-malisy vestal $/$ /malte-malty)	vestar-627
Label:	Profit $(650,1100)=17700$			

Visualization: GNUPLOT

2d Hyperplane (alpha= 0.80)

3d Hyperplane (alpha $=0.20$, beta $=0.50$)

Zaxis $\quad 1.8$

Visualization: GNUPLOT

GNUPLOT Command File

```
# Begin with a reset so we can make changes and immediately reload:
reset
# Define parameters are user-defined GNUPLOT variables:
maltq=4800
yeastq=1750
maltx=4
malty=2
profitx=12
profity=9
# Calculate the optimum, assuming that it is where the yeast
# and malt constraints are both binding:
xmax=(maltq-malty*yeastq)/(maltx-malty)
ymax=yeastq-xmax
maxprofit=xmax*profitx+ymax*profity
# Calculate points where the hops constraints intersect
# the yeast and malt constraints:
xlim = yeastq-1500
ylim = (maltq-maltx*1000)/malty
set style arrow 1 nohead linecolor rgb "gray" linewidth 2 dashtype solid
set arrow 1 from 1000,0,0 to 1000,ylim,0 arrowstyle 1
set arrow 2 from 0,1500,0 to xlim,1500,0 arrowstyle 1
```


GNUPLOT Command File (cont)

```
# Define linear functions representing the yeast and malt
# constraints as well as the isoprofit line at the optimal
# point:
yeast(x)=yeastq-x
malt (x)=(maltq-maltx*x)/malty
isoprofit(x) = ymax-profitx*(x-xmax)/profity
# Set up axes:
set xrange [0:1500]
set yrange [0:2500]
set ylabel 'batches of ale (y)' offset -1,0
set xlabel 'batches lager (x)' offset 0,-1
set xtics axis
set ytics axis
unset border
set arrow 3 from 0,0 to 1450,0 linestyle 1
set arrow 4 from 0,0 to 0,2550 linestyle 1
# Label the feasible region:
set label "feasible region" at 200,500
# Put a black circle at the optimum:
optimum = sprintf('(%.f,%.f)',xmax,ymax)
set label optimum at xmax+30,ymax+30
set object circle at xmax,ymax front size 6 \
    fillstyle solid 1 fillcolor rgb "black"
```


GNUPLOT Command File (cont)

```
# Generate a data file with extreme points of the feasible region:
set print "feasible.dat"
print sprintf('%.f %.f',0,0)
print sprintf(%%.f %.f',0,1500)
print sprintf('%.f %.f',xlim, 1500)
print sprintf('%.f %.f',xmax, ymax)
print sprintf('%.f %.f',1000, ylim)
print sprintf('%.f %.f',1000, 0)
unset print
# Define the style to be used for "filledcurves" to denote the
# feasible region:
set style fill transparent solid 0.2 noborder
set style line 1 linecolor "black" linewidth 2 dashtype 1
set style line 2 linecolor "forest-green" linewidth 2 dashtype 1
set style line 3 linecolor "red" linewidth 2 dashtype 2
plot yeast(x) ls 1, malt(x) ls 2, isoprofit(x) ls 3, \
    'feasible.dat' using 1:2 with filledcurves below notitle
```

