
AAE 526: More Linear Programming

Thomas F. Rutherford

Fall Semester, 2019
Department of Agricultural and Applied Economics

University of Wisconsin, Madison

September 9, 2019

1 / 59

Outline

• Another LP example

• Linear algebra and indexed GAMS code

• Linear programs in standard form

• Supersize me!

• Visualization

2 / 59

Another Tiny LP

The Wyndor Glass Co. produces high-quality glass products, including
windows and glass doors. It has three plants. Aluminum frames and
hardware are made in Plant 1, wood frames are made in Plant 2 and Plant
3 cuts the glass and assembles the products.
Profits are 3 for product 1 and 5 per unit of product 2.
Because of declining earnings, top management has decided to revamp the
product line. Unprofitable products are to be discontinued, and product
capacity will be reassigned to launch two new products.

3 / 59

Describe Constraints

The data indicates that each batch of product 1 produced per week
uses 1 hour of production time per week in Plant 1, whereas only 4
hours per week are available. The restriction is written
mathematically as

x1 ≤ 4

Similarly, Plant 2 imposes the restriction

2x2 ≤ 12

The number of hours of production time used per week in Plant 3
given x1 and x2 is 3x1 + 2x2 (3 hours of production per batch of good
1 and 2 hours per batch of good 2). The available capacity in Plant 3
provides the constraint:

3x1 + 2x2 ≤ 18

Finally, production rates cannot be negative, so it is necessary to
impose restrictions x1 ≥ 0 and x2 ≥ 0

4 / 59

Write Down an Algebraic Formulation

maxZ = 3x1 + 5x2

subject to the restrictions

x1 ≤ 4
2x2 ≤ 12

3x1 +2x2 ≤ 18

and
x1 ≥ 0, x2 ≥ 0

5 / 59

6 / 59

Graphical Solution: for Two Variable Problems

This problem has only two dimensions, so a graphical procedure can be
employed. We use label the axes as x1 and x2. The first step is then to
identify on the graph values of (x1, x2) which are feasible (consistent with
the restrictions).

7 / 59

Upper and Lower Bounds

Values of (x1, x2) consistent with the constraints 0 ≤ x1 ≤ 4 and 0 ≤ x2:

8 / 59

The Feasible Region

9 / 59

Solution

The optimal solution is x∗1 = 2, x∗2 = 6 with Z ∗ = 36. This implies 2
batches of product 1 and 6 batches of product 2 will be produced per
week, providing a total profit of $36,000 per week.

10 / 59

Outline

• Another LP example

• Linear algebra and indexed GAMS code

• Linear programs in standard form

• Supersize me!

• Visualization

11 / 59

Most Practical GAMS Models are Indexed

$TITLE Brewery Profit Maximization

set j Products /lager, ale/

i Ingredients /

malt Malt,

yeast Yeast,

dehops German hops,

wihops Wisconsin hops/;

parameter

p(j) Profit by product /lager 12, ale 9/

s(i) Supply by ingredient /malt 4800, yeast 1750,

dehops 1000, wihops 1750/;

table a(i,j) Requirements

lager ale

malt 4 2

yeast 1 1

dehops 1 0

wihops 0 1;

12 / 59

GAMS Models are Indexed (cont.)

variables Y(j) Production levels,

Z Profit (maximand);

nonnegative variable Y;

equations supply(i) Ingredient supply

profit Defines Z;

supply(i).. sum(j, a(i,j)*Y(j)) =L= s(i);

profit.. Z =E= sum(j, p(j)*Y(j));

MODEL BREWERY /supply, profit/;

solve BREWERY using LP maximizing Z;

13 / 59

Matrix basics

A matrix is an array of numbers. A ∈ Rm×n.

A =

 a11 · · · a1n

...
. . .

...
am1 · · · amn


which has m rows and n columns.

The table statement in GAMS can be used to define a matrix:

set i Row indices /1*3/,

j Column indice /1*2/;

table a(i,j) Matrix with three rows and two columns

1 2

1 0.23 12.3

2 -0.1 2.4

3 3.2 0.1 ;

14 / 59

Table versus Parameter

A matrix may be specified either the table or parameter statement:

set i Row indices /1*3/,

j Column indice /a,b/;

table a(i,j) Matrix with three rows and two columns

a b

1 0.23 12.3

2 -0.1 2.4

3 3.2 0.1 ;

parameter b(i,j) The same matrix in database format /

1.a 0.23

2.a -0.1

3.a 3.2

1.b 12.3

2.b 2.4

3.b 0.1 /;

parameter c(i,j) Check that a=b; c(i,j) = a(i,j) - b(i,j); display c;

---- 22 PARAMETER c check that a=b

(ALL 0.000)

15 / 59

Matrix Multiplication

Two matrices can be multiplied if their inner dimensions agree. In matrix
notation (MATLAB style):

C︸︷︷︸
(m×p)

= A︸︷︷︸
(m×n)

B︸︷︷︸
(n×p)

In detached coefficient notation (GAMS style) we write:

cij =
∑
k

aikbkj

In GAMS syntax, we have:

c(i,j) = sum(k, a(i,k) * b(k,j));

16 / 59

Transposition

• The transpose operator AT swaps rows and columns. If A ∈ Rm×n,
then AT ∈ Rn×m and (AT)ij = Aji

• It follows that:

(AT)T = A
(AB)T = BTAT

17 / 59

Linear and affine functions

• A function f (x1, . . . , xm) is linear in the variables x1, . . . , xm if there
exists constants a1, . . . , am such that

f (x1, . . . , xm) = a1x1 + . . .+ amxm =
∑
i

aixi = aT x

• A function f (x1, . . . , xm) is affine in the variables x1, . . . , xm if there
exists constants b, a1, . . . , am such that

f (x1, . . . , xm) = ba1x1 + . . .+ amxm = b +
∑
i

aixi = b + aT x

• Examples:

1 3x − y is linear in (x , y).
2 2xy + 1 is affine in x and y , but not in (x , y).
3 x2 + y2 is neither linear nor affine.

18 / 59

Linear and affine functions (cont.)

Several linear or affine functions can be combined:

a11x1 + . . . +a1nxn + b1

a21x1 + . . . +a2nxn + b2
...

...
am1x1 + . . . +amnxn + bm

⇒

 a11 · · · a1n
...

. . .
...

am1 · · · amn


 x1

...
xn

+

 b1
...
bn


which can be written simply as Ax + b. Same definitions apply:

• A vector-valued function F (x) is linear in x if there exists a constant
matrix A such that F (x) = Ax .

• A vector-valued function F (x) is affine in x if there exists a constant
matrix A and vector b such that F (x) = Ax + b.

19 / 59

Matrix basics: inner and outer products

A vector is a column matrix. We write x ∈ Rn to mean that

x =

 x1
...
xn


This is an n × 1 matrix.
Two vectors x , y ∈ Rn can be multiplied together in two ways. Both are
valid matrix multiplications:

• inner product: produces a scalar, xT y = x1y1 + · · ·+ xnyn.

• outer product: produces an n × n matrix.

xyT =

 x1y1 · · · x1yn
...

. . .
...

xny1 · · · xnyn


20 / 59

Calculating Inner and Outer Products in GAMS

set i/i1*i3/;

parameter x(i), y(i), xy, xyt(i,i);

* Generate two random arrays containing values

* between zero and one:

x(i) = uniform(0,1); y(i) = uniform(0,1);

* Inner product:

xy = sum(i, x(i)*y(i));

* Need a second symbol to refer to the set i:

alias (i,j);

* Outer product:

xyt(i,j) = x(i)*y(j);

display x, y, xy, xyt;

21 / 59

Calculating Inner and Outer Products in GAMS

---- 23 PARAMETER x

i1 0.172, i2 0.843, i3 0.550

---- 23 PARAMETER y

i1 0.301, i2 0.292, i3 0.224

---- 23 PARAMETER xy = 0.421

---- 23 PARAMETER xyt

i1 i2 i3

i1 0.052 0.050 0.038

i2 0.254 0.246 0.189

i3 0.166 0.161 0.123

22 / 59

Outline

• Another LP example

• Linear algebra and indexed GAMS code

• Linear programs in standard form

• Supersize me!

• Visualization

23 / 59

The linear program

A linear program is an optimization model with:

• real-valued variables (x ∈ Rn)

• linear cost function (cT x)
• constraints may be:

• affine equations (Ax = b)
• affine inequalities (Ax ≤ b or Ax ≥ b)
• combinations of the above

• individual variables may have:
• bounds (p ≤ xi , or xi ≤ q, or p ≤ xi ≤ q)
• no bounds (xi is unconstrained)

There are many equivalent representations of any linear program.

24 / 59

Linear Programming

Standard Form:

maximize c1x1 + c2x2 + · · ·+ cnxn
subject to a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2
...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm
x1, x2, . . . , xn ≥ 0

Why it’s hard:

• Lots of variables (n of them)

• Lots of boundaries to check (the inequalities)

Why it’s not impossible:

• All expressions are linear

25 / 59

Solutions of a Linear Program

For any given linear programming problem, exactly one
of the following statements applies:

1. The model is infeasible: there is no x that satisfies
all the constraints. (is the model correct?)

2. The model is feasible, but unbounded : the cost
function can be arbitrarily improved. (forgot a
constraint?)

3. Model has a solution which occurs on the
boundary of the feasible polyhdron. Note that
there is no guarantee that the solution is unique –
there may be many solutions!

26 / 59

Standard Form

• Every linear program can be put into the form:

max
z∈Rn

cT z

subject to:

Az ≤ b

z ≥ 0

• This is call the standard form of a linear program.

27 / 59

Brewery Profit: Standard Form

maxx ,y 120x + 90y
s.t.: 4x + 2y ≤ 4800

x + y ≤ 1750

0 ≤ x ≤ 1000, 0 ≤ y ≤ 1500

is equivalent to:

max
x ,y

[
120
90

]T [
x
y

]

s.t.


4 2
1 1
1 0
0 1

[x
y

]
≤


4800
1750
1000
1500


x , y ≥ 0

28 / 59

Hence, our brewery profit maximization model can be transformed into
standard inequality form with the assignments:

z =

[
x
y

]
c =

[
120
90

]

A =


4 2
1 1
1 0
0 1

 b =


4800
1750
1000
1500



29 / 59

Applications of Linear Programming

A partial list, taken from Ferris et al., Chapter 1:

• Resoure allocation

• The diet problem

• Linear surface fitting

• Load balancing

• Classification

• Minimum cost network flow

• ...

30 / 59

Resource Allocation

A company has m products which are produced with n resources. The
value of product i is ci , while each unit of resource j costs dj dollars. One
unit of product i requires aij units of resource j , and a maximum of bj
units of resource j are available:

max
x ,y

z =
∑
i

ciyi −
∑
j

djxj

subject to

xj =
∑
i

aijyi , xj ≤ bj , xj ≥ 0, yi ≥ 0

Note that the constraints can be written in detached coefficient form as:

xj =
∑
i

aijyi = a1jy1 + a2jy2 + . . .+ amjym

31 / 59

The Diet Problem

Given the prices pj of food type j , the content of nutrient i in food j (aij)
and the dietary requirement of nutrient i , bi , solve:

min
x

z =
∑
j

pjxj

subject to ∑
j

aijxj ≥ bi , ∀i

xj ≥ 0

32 / 59

Linear Surface Fitting

Given a set of observations A = [aij] and bi . Find weights on the columns of A
and a scalar constant γ which best “predicts” the value of b on the basis of
observations aij , assuming a linear model:

min
x,γ

m∑
i=1

∣∣∣∣∣∣
∑
j

aijxj + γ − bi

∣∣∣∣∣∣
or, equivalently

min
x,γ,y

z =
∑
i

yi

subject to

−yi ≤
∑
j

aijxj + γ − bi ≤ yi

Note that the constraint ensures that each yi is no smaller than the absolute
value |

∑
j aijxj + γ − bi |.

33 / 59

Load Balancing

Balance computational work among n processors, distributing the load in
such a way that the lightest-loaded processor has as heavy a load as
possible:

pi Current load of processor i = 1, 2, . . . , n

L Total load to be distributed

xi Fraction of additional load L to be distributed to processor i ,
with xi ≥ 0 and

∑
i xi = 1.

γ minimum final loads after distribution of the new workload L

max
x ,γ

γ

subject to

γ ≤ pi + xiL,
∑
i

xi = 1, xi ≥ 0 ∀i

34 / 59

Outline

• Another LP example

• Linear algebra and indexed GAMS code

• Linear programs in standard form

• Supersize me!

• Visualization

35 / 59

The McDonald’s Diet Problem

In words:

Minimize: the cost (or calories) of eating at
McDonald’s

Subject to: the total amounts of food or
nutrients fall between certain
minimum and maximum values

36 / 59

A GAMS Model

set n Nutritional needs /

calo Calories

carbo Carbohydrates

protein Protein

vita Vitamin A

vitc Vitamin C

calc Calcium

iron Iron /,

f Foods /

"Quarter Pounder w/ Cheese"

"McLean Deluxe w/ Cheese"

"Big Mac",

"Filet-O-Fish",

"McGrilled Chicken",

"Fries, small",

"Sausage McMuffin",

"1% Lowfat Milk",

"Orange Juice" /;

37 / 59

Source Data

http://nutrition.mcdonalds.com/getnutrition/nutritionfacts.pdf

38 / 59

The Data

table a(f,n) Nutritional content of foods

calo carbo protein vita vitc calc iron

"Quarter Pounder w/ Cheese" 510 34 28 15 6 30 20

"McLean Deluxe w/ Cheese" 370 35 24 15 10 20 20

"Big Mac" 500 42 25 6 2 25 20

"Filet-O-Fish" 370 38 14 2 0 15 10

"McGrilled Chicken" 400 42 31 8 15 15 8

"Fries, small" 220 26 3 0 15 0 2

"Sausage McMuffin" 345 27 15 4 0 20 15

"1% Lowfat Milk" 110 12 9 10 4 30 0

"Orange Juice" 80 20 1 2 120 2 2;

table nutr(n,*) Nutrient requirements

min max

calo 2000 inf

carbo 350 375

protein 55 inf

vita 100 inf

vitc 100 inf

calc 100 inf

iron 100 inf;

table food(f,*) Food cost and requirements

cost min max

"Quarter Pounder w/ Cheese" 1.84 0 inf

"McLean Deluxe w/ Cheese" 2.19 0 inf

"Big Mac" 1.84 0 inf

"Filet-O-Fish" 1.44 0 inf

"McGrilled Chicken" 2.29 0 inf

"Fries, small" 0.77 0 inf

"Sausage McMuffin" 1.29 0 inf

"1% Lowfat Milk" 0.6 0 inf

"Orange Juice" 0.72 0 inf; 39 / 59

Model Equations

nonnegative

variables Y(n) Nutritional content

X(f) Purchased quantity;

free

variable COST Total cost;

equations ydef, objdef;

ydef(n).. Y(n) =e= sum(f, X(f)*a(f,n));

objdef.. COST =e= sum(f, X(f) * food(f,"cost"));

model mincost /ydef, objdef /;

Y.LO(n) = nutr(n,"min"); Y.UP(n) = nutr(n,"max");

X.LO(f) = food(f,"min"); X.UP(f) = food(f,"max");

40 / 59

First Run

solve mincost using lp minimizing COST;

* Generate reports of the menu and diet:

parameter menu Resulting menu,;

menu("Cost","MinCost") = COST.L;

menu("Calories","MinCost") = Y.L("calo");

menu("ModelStat","MinCost") = mincost.modelstat;

menu("solvestat","MinCost") = mincost.solvestat;

menu(f,"MinCost") = X.L(f);

display menu;

41 / 59

First Run

MinCost

Cost 14.856

Calories 3965.369

Quarter Pounder w/ Cheese 4.385

Fries, small 6.148

1% Lowfat Milk 3.422

Cheap, but
4000 calories!

42 / 59

Second Run

Put an upper bound on calories.

Y.UP("calo") = 2500;

solve mincost using lp minimizing COST;

Calories are down, cost is up and the diet looks better.

MinCost Cal2500

Cost 14.856 16.671

Calories 3965.369 2500.000

Quarter Pounder w/ Cheese 4.385 0.232

McLean Deluxe w/ Cheese 3.855

Fries, small 6.148

1% Lowfat Milk 3.422 2.043

Orange Juice 9.134

43 / 59

Third Run

Try for a 2000 calorie diet.

Y.UP("calo") = 2000;

solve mincost using lp minimizing COST;

Not possible!

MODEL mincost OBJECTIVE C

TYPE LP DIRECTION MINIMIZE

SOLVER CPLEX FROM LINE 121

**** SOLVER STATUS 1 Normal Completion

**** MODEL STATUS 4 Infeasible

**** OBJECTIVE VALUE 0.9121

44 / 59

Minimize calories, ignoring cost.

variable CALO Objective value -- calories;

equation objcalo Objective -- minimize calories;

objcalo.. CALO =e= Y("calo");

model mincal /ydef, objdef, objcalo/;

solve mincal using lp minimizing CALO;

Minimum calories is 2467 at a cost of $16.75:

MinCost Cal2500 MinCal

Cost 14.856 16.671 16.745

Calories 3965.369 2500.000 2466.981

Quarter Pounder w/ Cheese 4.385 0.232

McLean Deluxe w/ Cheese 3.855 4.088

Fries, small 6.148

1% Lowfat Milk 3.422 2.043 2.044

Orange Juice 9.134 9.119

45 / 59

Add some variety

X.UP(f) = 2;

solve mincost using lp minimizing COST;

More intersting cuisine. Cost is up a bit, calories are down relative to original
solution.

MinCost MinCal MinCostV

Cost 14.856 16.745 16.766

Calories 3965.369 2466.981 3798.077

Quarter Pounder w/ Cheese 4.385 2.000

McLean Deluxe w/ Cheese 4.088 2.000

Big Mac 2.000

Fries, small 6.148 1.423

Sausage McMuffin 1.000

1% Lowfat Milk 3.422 2.044 2.000

Orange Juice 9.119 2.000

46 / 59

Keep variety but minimize calories

X.UP(f) = 2;

solve mincal using lp minimizing COST;

Almost 3500 calories. Wow!

MinCost MinCal MinCostV MinCalV

Cost 14.856 16.745 16.766 17.248

Calories 3965.369 2466.981 3798.077 3488.287

Quarter Pounder w/ Cheese 4.385 2.000 1.952

McLean Deluxe w/ Cheese 4.088 2.000 2.000

Big Mac 2.000

Filet-O-Fish 0.359

McGrilled Chicken 2.000

Fries, small 6.148 1.423 2.000

Sausage McMuffin 1.000

1% Lowfat Milk 3.422 2.044 2.000 2.000

Orange Juice 9.119 2.000 2.000

47 / 59

Whole Numbers Solution

Move from linear program (LP) to mixed integer programming (MIP).

integer variable XI(f) Food purchase;

equation xidef; xidef(f).. X(f) =e= XI(f);

XI.LO(f) = 0; XI.UP(f) = 2;

model integerdiet /ydef, objdef, objcalo, xidef /;

solve integerdiet using MIP minimizing CALO;

This only makes a small increase in price and calories.
MinCost MinCal MinCostV MinCalV MinCalInt

Cost 14.856 16.745 16.766 17.248 17.490

ModelStat 1.000 1.000 1.000 1.000 1.000

SolveStat 1.000 1.000 1.000 1.000 1.000

Quarter Pounder w/ Cheese 4.385 2.000 1.952 2.000

McLean Deluxe w/ Cheese 4.088 2.000 2.000 2.000

Big Mac 2.000

Filet-O-Fish 0.359 1.000

McGrilled Chicken 2.000 2.000

Fries, small 6.148 1.423 2.000 1.000

Sausage McMuffin 1.000

1% Lowfat Milk 3.422 2.044 2.000 2.000 2.000

Orange Juice 9.119 2.000 2.000 2.000

Calories 3965.369 2466.981 3798.077 3488.287 3530.000

48 / 59

Some GAMS Program Details

Include a set definition to sequence rows in the report – the universal
element list:

set seq /Cost, Calo, ModelStat, SolveStat/;

MinCost Cal2500 Cal2000 ...

Cost 14.856 16.671 17.796

Calo 3965.369 2500.000 2000.000

ModelStat 1.000 1.000 4.000

SolveStat 1.000 1.000 1.000

...

49 / 59

Some GAMS Program Details

Uses a batinclude subroutine to add scenario results to the report
parameters menu and diet:

parameter menu Resulting menu,

diet Resulting diet;

$onechov >%gams.scrdir%report.gms

menu("Cost","%1") = C.L;

menu("Calories","%1") = Y.L("calo");

menu("ModelStat","%1") = mincost.modelstat;

menu("solvestat","%1") = mincost.solvestat;

menu(f,"%1") = X.L(f);

diet("Cost","%1") = C.L;

diet("ModelStat","%1") = mincost.modelstat;

diet("SolveStat","%1") = mincost.solvestat;

diet(n,"%1") = Y.L(n);

$offecho

* Define an environment variable to label the report:

solve mincost using lp minimizing COST;

$batinclude %gams.scrdir%report MinCost

50 / 59

Some GAMS Program Details

Compute the integer programming solution by introducing an integer
variable and assigning it to the LP decision variable. All variables and
equations from the LP remain in the model so reporting routine is
unchanged!

integer variable XI(f) Food purchase;

equation xidef;

xidef(f).. X(f) =e= XI(f);

XI.LO(f) = 0;

XI.UP(f) = 2;

model integerdiet /ydef, objdef, objcalo, xidef /;

solve integerdiet using MIP minimizing CAL;

51 / 59

Outline

• Another LP example

• Linear algebra and indexed GAMS code

• Linear programs in standard form

• Supersize me!

• Visualization

52 / 59

Recall the Brewery Profit Model

max
x ,y

120x + 90y

subject to:
4x + 2y ≤ 4800

x + y ≤ 1750

0 ≤ x ≤ 1000

0 ≤ y ≤ 1500

In which:

x : number of batches of lager produced

y : number of batches of ales produced

53 / 59

Visualization: Scatter Plots in Excel

54 / 59

Visualization: GNUPLOT

55 / 59

Visualization: GNUPLOT

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400

feasible region

Profit(650,1100)=17700

b
at

ch
es

of
al

e
(Y

)

batches of lager (X)

yeast
malt

isoprofit

56 / 59

GNUPLOT Command File

Begin with a reset so we can make changes and immediately reload:

reset

Define parameters are user-defined GNUPLOT variables:

maltq=4800

yeastq=1750

maltx=4

malty=2

profitx=12

profity=9

Calculate the optimum, assuming that it is where the yeast

and malt constraints are both binding:

xmax=(maltq-malty*yeastq)/(maltx-malty)

ymax=yeastq-xmax

maxprofit=xmax*profitx+ymax*profity

Calculate points where the hops constraints intersect

the yeast and malt constraints:

xlim = yeastq-1500

ylim = (maltq-maltx*1000)/malty

set style arrow 1 nohead linecolor rgb "gray" linewidth 2 dashtype solid

set arrow 1 from 1000,0,0 to 1000,ylim,0 arrowstyle 1

set arrow 2 from 0,1500,0 to xlim,1500,0 arrowstyle 1

57 / 59

GNUPLOT Command File (cont)

Define linear functions representing the yeast and malt

constraints as well as the isoprofit line at the optimal

point:

yeast(x)=yeastq-x

malt(x)=(maltq-maltx*x)/malty

isoprofit(x) = ymax-profitx*(x-xmax)/profity

Set up axes:

set xrange [0:1500]

set yrange [0:2500]

set ylabel ’batches of ale (y)’ offset -1,0

set xlabel ’batches lager (x)’ offset 0,-1

set xtics axis

set ytics axis

unset border

set arrow 3 from 0,0 to 1450,0 linestyle 1

set arrow 4 from 0,0 to 0,2550 linestyle 1

Label the feasible region:

set label "feasible region" at 200,500

Put a black circle at the optimum:

optimum = sprintf(’(%.f,%.f)’,xmax,ymax)

set label optimum at xmax+30,ymax+30

set object circle at xmax,ymax front size 6 \

fillstyle solid 1 fillcolor rgb "black"
58 / 59

GNUPLOT Command File (cont)

Generate a data file with extreme points of the feasible region:

set print "feasible.dat"

print sprintf(’%.f %.f’,0,0)

print sprintf(’%.f %.f’,0,1500)

print sprintf(’%.f %.f’,xlim, 1500)

print sprintf(’%.f %.f’,xmax, ymax)

print sprintf(’%.f %.f’,1000, ylim)

print sprintf(’%.f %.f’,1000, 0)

unset print

Define the style to be used for "filledcurves" to denote the

feasible region:

set style fill transparent solid 0.2 noborder

set style line 1 linecolor "black" linewidth 2 dashtype 1

set style line 2 linecolor "forest-green" linewidth 2 dashtype 1

set style line 3 linecolor "red" linewidth 2 dashtype 2

plot yeast(x) ls 1, malt(x) ls 2, isoprofit(x) ls 3, \

’feasible.dat’ using 1:2 with filledcurves below notitle

59 / 59

