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 Computational Experience in Solving Equilibrium
 Models by a Sequence of Linear

 Complementarity Problems

 LARS MATHIESEN

 Norwegian School of Economics and Business Administration, Bergen, Norway

 (Received July 1983; revised August 1984; accepted December 1984)

 This paper presents a modeling format and a solution algorithm for partial and

 general economic equilibrium problems. It reports on computational experience
 from a series of small to medium sized problems taken from the literature on

 computation of economic equilibria. The common characteristic of these models

 is the presence of weak inequalities and complementary slackness, e.g., a linear
 technology with alternative activities or various institutional constraints on

 prices. The algorithm computes the equilibrium by solving a sequence of linear

 complementarity problems. The iterative (outer) part of this algorithm is a
 Newton process. For the inner part, we use Lemke's almost complementary
 pivoting algorithm. Theoretical results for the performance of this algorithm are

 at present available only for the partial equilibrium cases. Our computational
 experience with both types of models, however, is encouraging. The algorithm
 solved all nine test problems when initiated at reasonable starting points. Five
 of these nine problems are solved for several different starting points, indicating
 a large region over which the algorithm converges. Our results demonstrate

 that the algorithm is economical in terms of the number of pivots, function

 evaluations and CPU time.

 W E ARE CONCERNED with solving certain types of partial and
 AV general economic equilibrium problems involving production and
 consumption. Because the two types of problems are mathematically
 similar, we find it instructive to unify their treatment within one mod-
 eling format. Our main focus, however, is on solving general (or Wal-
 rasian) equilibrium problems.

 For a given problem, we formulate first order necessary conditions for
 each agent or sector to be in equilibrium and then observe that the
 resulting model is a complementarity problem, i.e.,

 (CP) find z E R' that solves F(z) >- 0, z>- 0 and zTF(z) = 0.

 It is important to distinguish between this "equilibrium" modeling ap-
 proach and the "optimization" approach. The first order optimality

 Subject classification: 131 economic equilibrium modeling, 622 nonlinear complementarity, 642 sequence
 of linear complementarity problems.

 1225

 Operations Research 0030-364X/85/3306-1225 $01.25
 Vol. 33, No. 6, November-December 1985 ? 1985 Operations Research Society of America

This content downloaded from 
������������128.104.46.206 on Mon, 12 Jul 2021 16:03:56 UTC������������� 

All use subject to https://about.jstor.org/terms



 1226 Mathiesen

 conditions of a mathematical programming model are also known to
 satisfy CP. Thus, if an equilibrium problem can be posed as an optimi-
 zation model, it will probably be computationally more efficient to solve
 it by a nonlinear programming algorithm. An equilibrium model, however,
 may be "nonintegrable." That is, there may be no optimization model
 that leads to this complementarity problem. In general, lack of symmetry
 and/or skew-symmetry (explained below) will be the cause. Particular
 examples of nonintegrable equilibrium problems include those that in-
 volve: several households with distinct endowments and tastes; ad valo-
 rem taxes or tariffs; institutional constraints on prices such as minimum-

 wage laws; or invariant capital stock (Hansen and Koopmans 1972).
 In addition to nonintegrability, we shall focus on weak inequalities and

 complementary slackness in these problems. The essential fact is that,
 for at least some of these inequalities, we do not know a priori (apart
 from the implications of zTF(z) = 0) which will hold as strict inequalities
 and which will hold with equality at an equilibrium. Two classes of
 modeling features will result in such a model. First, inequalities are
 obtained if we specify the production of a commodity by alternative
 technical processes (typically a linear technology matrix). Second, the
 economic problem under consideration may involve various types of
 institutional constraints on prices. Some prices might be constrained by
 upper or lower bounds, as in fix-price models, or might be restricted by
 single-period budget constraints in multiperiod models.

 The literature is rich in solution approaches to the computation of an
 economic equilibrium. The optimization approach (re-)phrases the model
 in terms of maximizing the sum of producers' and consumers' surplus,
 that is, the line integral of the inverse demand and supply functions.
 This idea originated with Samuelson (1947), and is widely used in
 economic analyses of topics such as competitive spatial equilibrium,
 marginal cost pricing and peak load pricing. (See e.g., Takayama and
 Judge 1971; Littlechild 1970; and Pressman 1970.) An optimization model
 can also be obtained when there are homothetic preferences. One can
 then postulate a single household whose utility function is representative
 of the economy as a whole. (See Manne 1976.) In both cases,
 one may compute the optimal activity levels using a nonlinear optimi-
 zation algorithm, and derive market prices from the corresponding
 shadow prices.

 A second approach, which is more desirable from an economic-
 theoretical point of view because it provides a constructive proof for the
 existence of an equilibrium, is the fixed-point method pioneered by Scarf

 (1973). (See also Shoven and Whalley 1972; and Shoven 1983.)
 The third general approach is to employ iterative solution techniques

 such as tatonnement, Gauss-Seidel, Jacobi or Newton methods. This
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 Solving Equilibrium Models 1227

 approach is perhaps most commonly used for solving equilibrium models
 phrased as a system of nonlinear (excess demand) equations.

 For the model types we consider, each of these methods poses difficul-
 ties. The optimization approach (which is tailored for complementary
 slackness) is available only if the complementarity model is integrable.
 Thus, to use this approach, one must modify functions or abstain from
 modeling certain economic features. Nonlinear equation methods (for
 which integrability is of no concern) are traditionally restricted to a set
 of equations and not inequalities. They do not allow for bounds on
 individual variables, and do not easily accommodate complementary
 slackness conditions. The fixed-point techniques are general-purpose.
 They are, however, known to perform much less efficiently on point-to-
 set maps than on point-to-point maps. Fixed-point techniques also seem
 to have distinct limitations with respect to the dimensions of the problem.
 These considerations motivate the present work.

 There are ways of dealing with each of these deficiencies. Noninte-
 grable models have been approximated by a sequence of integrable models
 and solved by standard optimization methods. (See the PIES algorithm
 described by Hogan 1975 and Ahn 1978. See also Carey 1977.) Pang and
 Chan (1982) have extended iterative methods to deal with complementary
 slackness. Awoniyi and Todd (1981) have accelerated fixed-point algo-
 rithms using quasi-Newton methods, and Ginsburgh and Waelbroeck
 (1981) and Dervis, De Melo and Robinson (1982) have developed solution
 approaches that combine several algorithms. These contributions also
 reduce, in several ways, the differences among the three approaches.

 Our Sequential Linear Complementarity (SLCP) algorithm computes
 an equilibrium by solving a sequence of linear approximations obtained
 by taking first-order Taylor expansions of nonlinear terms. The resulting
 linear complementarity problems (LCPs) are solved by Lemke's "almost
 complementary pivoting method." (See Lemke 1965 or Cottle and Dan-
 tzig 1968.) Both the modeling format and this solution approach have
 been reported previously for partial equilibrium (PE) models (Hansen
 and Manne 1977, Mathiesen 1977, Eaves 1978 and Josephy 1979a, b. See
 also Irwin and Yang 1982 and Friesz et al. 1983 on dealing with economic
 spatial equilibrium problems, and Dafermos 1980 and Aashanti and
 Magnanti 1982 on computing an equilibrium in a traffic network.) This
 paper contributes to the literature by reporting on the adaptation of the
 CP format and SLCP algorithm to general equilibrium (GE) models, and
 describes a wide range of computational experiments with both types of
 models.

 The CP format we employ treats prices and activity levels simultane-
 ously. Consequently, the LCP matrix may be large, but typically will be
 sparse. Using Tomlin's (1978) implementation of Lemke's algorithm, we
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 1228 Mathiesen

 exploit sparsity. Our approach contrasts with the application (to this
 format) of a fixed-point algorithm, which does not exploit sparsity and
 hence is hampered by the dimensionality of the format. (See Fisher and
 Gould 1974 and Todd 1980, who propose algorithms, but do not present

 computational results.)
 The SLCP algorithm consists of two parts, an outer iterative part and

 an inner general-purpose matrix inversion technique (Lemke's algo-
 rithm). In the neighborhood of an equilibrium, the iterative algorithm is

 a Newton process. Its inner part seems to share the pathseeking capability

 of fixed-point techniques by means of complementary pivots. These
 pivots also relate the algorithm to optimization codes built around the

 simplex technique. (See e.g., Murtagh and Saunders 1978, 1983.) In total,
 the SLCP algorithm shares some features with all the above-mentioned

 approaches. From a computational perspective, this combination has
 proven to be highly effective.

 Theoretical results for the convergence of this type of algorithm
 typically rely on the positive semi-definiteness of the gradient VF of the
 mapping F. In partial equilibrium context, VF typically will be positive
 semi-definite and convergence can be proved. We demonstrate that for
 the general equilibrium case, this assumption is less likely to be valid. In
 particular, the income effect of household demand tends to cause indef-
 initeness of VF.

 In this report, we will emphasize computational experiments and
 attempt to demonstrate or explain why the results we found are so
 encouraging.

 The outline of this paper is as follows. In the next section we present
 the modeling format and discuss some aspects of economic equilibrium
 modeling. Section 2 deals with the algorithm, its iterative steps, the linear
 complementarity problem, and some implementation issues. Thereafter,
 in Sections 3 and 4, we report on the numerical examples and our
 computational results. Section 5 concludes with some thoughts on the
 apparent numerical success of the SLCP algorithm.

 1. ECONOMIC EQUILIBRIUM MODELING

 The equilibrium problem of an economy is traditionally stated in terms
 of excess demand functions determined by the endowments of the econ-
 omy, the preferences of its members, and its technology. To simplify the
 present exposition and thereby convey the essentials of the modeling
 format, we will restrict ourselves to an economy with competitive behav-
 ior throughout with no price distortions. Extensions to distortive ad
 valorem taxes, a public sector, a foreign sector with imports and exports,
 institutional constraints on prices, or a noncompetitive behavior, would
 be easy to accommodate. (See our test examples in Tables 1-111; Mathie-
 sen and Lont 1983; and Mathiesen and Steigum 1983.)
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 Solving Equilibrium Models 1229

 Consider an economy or a sector with production. Suppose that it has
 m commodities and n activities with constant returns to scale production.
 We base our presentation of the modeling format and the algorithm on
 the assumption that production is characterized by a linear technology
 matrix with fixed input-output coefficients. Two of the test examples
 have nonlinear production functions with price-responsive input coeffi-
 cients. The successful application of SLCP to these two models indicates
 a wider applicability of SLCP than that presented below. (See Mathiesen
 1985.)

 For i= 1, . . ., m andj= 1, * *, n, let

 p = (pi) denote the vector of prices,
 b = (bi) denote the vector of endowments,

 d(p) = (di(p)) denote the market demand functions, which we assume
 to be point-to-point and continuously differentiable,

 y = (yj) denote the vector of activity levels,

 c = (cj) denote the vector of unit costs of operating the activities,
 and finally, let

 A = (aij) denote the technology matrix of input-output coefficients
 consistent with unit production, where aij > 0 (aij < 0) denotes
 an output (input).

 Because of the generality of the theory of economic equilibrium, there

 are several ways to characterize an equilibrium. We shall use the following
 Definition (cf. Scarf, Def. 5.1.3):

 A price vector p* and a vector of activity levels y* constitute a
 competitive equilibrium if:

 No activity earns a positive profit;

 c - ATp* 0. (1.1)

 No commodity is in excess demand;

 b + Ay* - d(p*) > 0. (1.2)

 No prices or activity levels are negative;

 p* > 0, y* > 0. (1.3)
 An activity earning a deficit is not used and an operated activity has no
 loss;

 (c - ATp*) Ty* = 0. (1.4)

 A commodity in excess supply has zero price, and a positive price implies
 market clearance;

 p*T(b + Ay* - d(p*)) = 0. (1.5)

 The vector c of operating costs represents factors of production that are
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 1230 Mathiesen

 exogenous to the economy or sector under consideration. It typically
 applies in a partial equilibrium setting.

 Assume that (1.1)-(1.5) describe a general equilibrium problem (of a
 closed economy). Then the cost vector c = 0 because all prices will be
 determined simultaneously and no single price will be exogeneously given.

 In this case, demands di(p) for i = 1, * * *, m are functions of all prices
 in the economy, i.e., both product and factor prices. Furthermore, these
 demand functions will usually be specified in a manner consistent with

 individual household utility maximization, that is, di(p) = Xh Xh, where
 xi is the hth household's utility maximizing demand of commodity i.
 Households' excess demands are given by d(p) - b. If the demands
 satisfy each individual household's budget and there is nonsatiation, then
 pTd(p) = pub, and the demand functions d(p) are homogeneous of
 degree 0 in all prices. We see that when c = 0, (1.1)-(1.5) determine only
 relative prices. That is, if the vector p* represents equilibrium prices, so

 does Xp* for any scalar X > 0. Hence, we are free to normalize the prices.
 The complementarity format is as follows:

 (CP) find z E R' that solves F(z) - 0, z - 0 and zTF(z) = 0.

 When the mapping F of R' into itself is an affine transformation, say
 F(z) = q + Mz, the corresponding complementarity problem is said to be

 linear, otherwise it is nonlinear. In the iterative process we shall solve a
 linear complementarity problem (LCP), denoted (q, M). The structure

 of the matrix M will then be of special concern, so let us partition M

 M Q V] =Q V] + [U o] Ml + M2 ) U V 0 V U 0 ~~~~~~~~~(2)
 where Q and V are square matrices. If S = -UT, then M2 is called skew-
 symmetric. If, in addition, Q and V are symmetric (and so is M1), then
 M is called bisymmetric.

 The association between our equilibrium problem (1) and the comple-
 mentarity format (CP) is given by

 Z = [ and F[] + Ay-d(p) (3)

 From (3), it is also clear that, if the market demand functions are linear
 in prices, i.e., d(p) = d + Dp, then our definition of an economic
 equilibrium will be a linear complementarity problem. In this case, the
 matrix M is bisymmetric if D is symmetric, and furthermore, M is positive
 semidefinite if D is negative semidefinite.

 In the introduction, we distinguished between the optimization ap-
 proach and the equilibrium approach. The bridge between them is the
 notion of a stationary point.
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 Solving Equilibrium Models 1231

 Let P be a convex set in Rm and g: P -R a map. A point ir* E P is
 defined to be a stationary point of the pair (g, P) if 7r*Tg(7r*) :> 7rg(7r*)
 for all 7r E P. The following result is known:

 Let P= Ipl ATp c c, p - O}, i.e., a closed polyhedral, convex set and
 let g(p) =d (p) - b be continuous. Then p* is a stationary point of the
 pair (d - b, P) if and only if

 ATp* ' c, p*-O,

 Ay d(p*) -b, (4
 (c - ATp*)Ty = 0, p*T(Ay + b - d(p*)) = 0,

 y O 0

 has a solution y E R .
 Hence p* and y* constitute an equilibrium (1) if and only if p* is a

 stationary point of (d - b, P). (Note that (4) assumes skew-symmetry.)
 A stationary point corresponds to an optimization problem. In fact, if

 M of an LCP derived from (1) is bisymmetric, then there is an equivalent
 quadratic programming (QP) problem (and its dual). These QPs are:

 minimize JcTy - 1/2pTDpI subject to Ay + b - d - Dp > 0, y > 0,

 and

 maximize I pTd + /2p TDp - pTb subject to ATp ? c, p - 0.

 Awoniyi and Todd present a general framework which, among other
 applications, contains a "distorted stationary point problem." In our
 notation, this formulation is obtained by replacing the matrix A in (1.1)
 and (1.4) by an equally dimensioned matrix B, that is

 c - BTp*> o (1.1')

 and

 (c - BTp*)Ty* = 0. (1.4)

 We now have a more general formulation, which includes (1.1)-(1.5) as
 a special case. The following two problems provide examples of nontrivial
 applications.

 (i) Ad valorem taxes and subsidies on factors of production. Let tij ? 0
 be an ad valorem tax on input (or subsidy on output, tij < 0) of factor
 i into activity j. The cost coefficient bij is then defined as bij=
 (1 + tij)aij. (See test problem no. 2.)

 (ii) The invariant capital stock problem. (See Hansen and Koopmans.)

 In this case the coefficients aij and bij are defined as aij = -(dij - eij)
 and bij = (dij - aeij) for dij and eij nonnegative and the utility discount
 factor a < 1. (See test problem no. 7.)
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 1232 Mathiesen

 As evidenced by these two examples and our other test problems in
 Section 3, equilibrium problems will, in several instances, result in non-
 bisymmetric LCPs. In these cases, there are no equivalent QPs. It would
 be inappropriate for us to conclude that an optimization approach to the
 solution of these problems is not feasible, cf. the PIES algorithm and
 Carey's suggested parametric revisions to obtain an integrable model.
 Our computational experience, however, indicates that the SLCP may
 be a more efficient approach for several types of problems.

 2. AN ITERATIVE ALGORITHM

 Our SLCP algorithm computes the equilibrium prices and activity
 levels by solving a sequence of approximating LCPs. These linear ap-
 proximations are obtained by taking first order Taylor expansions, re-
 sulting in a Newton-like iterative process. Each LCP is solved using
 Lemke's almost complementary pivoting algorithm.

 Let e and 6 be two positive scalars of small value. The iterative
 algorithm to solve (1) can be summarized by the following steps:

 1. Initialization:
 set k = 0 and stipulate zA.

 2. Iteration count:
 replace k by k + 1 and set i z

 3. Evaluate the linearization:

 LF(zIi) -qk+Mkz
 4. Solve the LCP (qk, Mk):

 find z and w that solve

 w = qk + Mkz 2 0 Z > 0, and wTz = 0.
 5. Construct the iterate:

 if z E domain F and z E domain VF, then the iterate Zk Z;
 if not, construct a modified iterate (see our later discussion).

 6. Test for termination:

 if Fi(zk) > -6 and I .z * Fi(z) I < e for all i, then Zk is an
 approximate equilibrium. If not, return to step 2.

 There are three critical points associated with the analysis of iterative
 processes. The first is to ascertain that the iterates JZkI are well defined-
 that is, at a given iteration, we must be able to obtain a solution to the
 linear approximation. However, not just any solution will do. The iterate
 must belong to the domains of F and VF. The second point concerns the
 convergence of the generated sequence {ZkI and whether its limit point is
 a solution to our problem. Our third concern is the economy of the entire
 process. We now address these points, although the focus of this paper
 is on the third issue.
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 Solving Equilibrium Models 1233

 2.1. Constructing the LCP

 The first order Taylor expansion of a function f (x) at a point x is

 Lf (X I X )f (X) + Vf (X)(x-X) = (f (X)- Vf (x)x) + Vf (x)x h + Hx,

 where H = Vf(x) = (af (X)/axj) is the matrix of partial derivatives of f
 with respect to x, and h is a vector. (In an optimization framework, F of

 CP would itself be a gradient mapping, say F = VO, and F's gradient
 matrix H would be the Hessian matrix of some function 0 (x).)

 (1.1) is expressed in a linear form and (1.2) represents the only
 nonlinearities in the model. Linearizing b + Ay -d (p) > 0, we obtain

 b+Ay-d(l) + Vd(,b)i-Vd( 5)p

 = b - td(p) - Vd(p)p} + Ay + {-Vd(j5)}p

 b - g + Ay + Gp,

 where g is a vector and G is the negative of the Jacobian matrix of
 household demand and supply.

 A linear approximation of (1) can then be stated as follows:
 Find activity levels y and prices p, satisfying

 w1 = c-ATp , 0, (5.1)

 w2= (b - g) + Ay + Gp > O, (5.2)

 y 2 0, p > 0, (5.3)

 w1y = 0, (5.4)

 w2p = 0. (5.5)

 (5.1)-(5.5) is the approximating LCP for a PE-model (partial equilibrium
 model). In a GE-case (general equilibrium case), however, (5.1)-(5.5)

 may not be an appropriate model. Note that when function f is homoge-
 neous of degree zero in all arguments, then Vf(x)x = 0 for all x, implying
 that when x $ 0, Vf (x) is a singular matrix. In a Walrasian equilibrium
 model, household demands (d(p)) are homogeneous of degree zero in all
 prices. A basis matrix of the linear approximation, (5.1) and (5.2), will
 be singular at an equilibrium. It will be nearly singular when the process
 approaches equilibrium, and hence numerically unstable.

 This singularity problem is, of course, nothing but the observation that
 in a Walrasian equilibrium, (1.1)-(1.5) determines only relative prices.
 We avoid this impasse by choosing a numeraire, stipulating its price, say
 Pi = pi and dropping the i'th excess-supply constraint of (5.2). We thereby
 create an LCP of dimension n + m - 1. Because there are m commodities,
 there are m candidates for numeraire and hence m alternative LCPs to
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 1234 Mathiesen

 choose among at a given iterate 2. Any of these can possibly be solved to
 obtain the next iterate. (In the sequel, it is understood that dimensions
 of vectors and matrices of the LCP are reduced by 1 when we discuss
 GE-models.) An alternative normalization that avoids the singularity is
 to add the constraint ep = 1, where e = (1, ** , 1). This device is applied
 in fixed-point techniques.

 In a partial equilibrium model, the "price-level" is already given by the
 exogeneous vector c.

 2.2. Solving the LCP

 In order to obtain the iterate (zk), we apply Lemke's algorithm. This
 algorithm is known to terminate either with a solution to the LCP, or by
 finding a so-called secondary ray of almost complementary solutions. To
 prove that Lemke's algorithm computes a solution to a particular LCP,
 it therefore suffices to show that this LCP has no secondary ray.

 Three of our test problems (descriptions of all test problems appear in
 Tables I and II, Section 3, and Table III, Section 4) have a structure
 such that this can be done. In a separate appendix (available upon
 request to the author), we have shown that LCPs of problems 2, 3 and 7
 have no secondary rays. Thus Lemke's algorithm computes a solution to
 these LCPs. The presence of ad valorem taxes in model 2, and a discount
 factor in model 7, both destroying the skew-symmetry of the matrix M
 (see end of Section 1), do not affect this result.

 Lemke has proved a general result, which applies in the following way
 to our situation:

 Let the matrix M be copositive plus. If Lemke's algorithm terminates
 in a secondary ray, then (5.1)-(5.3) has no solution. (See also Cottle
 and Dantzig.)

 This result implies a constructive proof for the existence of a solution,
 that is, if there is a solution for the LCP, then Lemke's algorithm
 computes one. In order to prove that iterates are well-defined, however,
 we shall have to demonstrate that the generic LCP does indeed have a
 solution.

 For the PIES energy model (problem 1), the Jacobian of demand is

 negative definite for P contained in a set of P c R'!. P contains most of
 R6 and includes the equilibrium. (There are, however, price vectors
 p > 0, such that xT[Vd(13)]x > 0, that is, the Jacobian is not negative
 definite on all of R'.) When Vd(p) is negative definite, M has the
 copositive plus property. (See also Josephy 1979b.) Existence of a feasible
 solution (to (5.1)-(5.3)) follows because the function pTGp + pT(b - g)

 is bounded below on the set ir = Ip > 0, ATp c c}. Then, according to
 Eaves' (1971) result, the LCP has a solution.
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 Solving Equilibrium Models 1235

 Thus, in four cases (examples 1-3 and 7), we obtain a solution from
 the linear approximation, and can construt a well-defined iterate. We
 observe that examples 1-3 are PE models, while the seventh is a planning
 type (non-Walrasian) model. In PE-models, the Jacobian matrix of
 household demand, Vd(p), will typically be negative (semi-) definite-
 as in examples 1-3. Thus in partial equilibrium problems the matrix G
 will typically be positive semi-definite and hence copositive plus. Exist-
 ence of feasible vectors y and p usually follows from an economically
 meaningful construction. If so, Lemke's algorithm will compute a solu-
 tion.

 Consider, then, the Walrasian model. In this case, household demands
 satisfy individual households' budgets and the Jacobian matrix might
 not be negative semi-definite. Our fifth test example illustrates this
 point. Here demands are given by functions

 di(p) = Eh X(p) Eh Pik pkbk) i ,* 7
 (6.1)

 di(p)-O= i= 8, ... -14,

 where k = 11, 12, 13; h = 1 *, 4, and its Jacobian matrix is

 Di 0 D3
 Vd(p) 0 0 0$. (6.2)

 Di= (Odi/pi) is a (7 x 7) diagonal matrix will negative entries, hence it
 is negative definite. D3 = (adi/apk) is a (7 X 3) matrix with positive
 entries. D1 accounts for the (partial equilibrium) effects of the Slutsky
 equation of consumer demand theory. ((6.1.) is known to display gross-
 substitutability in this respect, and hence be represented by a negative
 definite Jacobian.) D3 accounts for general equilibrium effects because
 income depends on endogeneous prices and is not exogeneously stipulated
 as in a partial equilibrium setting.

 The matrix Vd (jp) is clearly not negative semidefinite and we observe
 that it is precisely the general equilibrium income-effects that violate the
 structure. This indefiniteness of the Jacobian also characterizes our other
 Walrasian test models 4, 6 and 9.

 We are unaware of any theoretical result that can come to our rescue
 to prove that Lemke's algorithm will compute a solution, if one exists,
 for the LCP of a Walrasian model. Our empirical finding, however, is
 that Lemke's algorithm does indeed process the LCPs, that is, compute
 a solution or show that none exists. For the text examples in this report,
 we never experienced an LCP without a solution. Subsequent work has
 provided an example where an LCP of the SLCP process can have none,
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 1236 Mathiesen

 one or two solutions, depending on the choice of numeraire and point of
 linearization (Mathiesen 1984).

 Remember that, in the Walrasian case, we choose a numeraire to
 obtain an LCP. Hence, when LCPi(2) has no solution, we can switch to
 numeraire j1 # i, and solve LCPj(2). In the example referred to in the
 last paragraph, this device helped us solve the Walrasian model from any
 starting point on the price simplex.

 The linearization implied by the first order Taylor expansion, (6.2), is

 d(p5) + Dip1 + D3p3
 Consider the alternative linearization

 (d(p) + D3p3) + Dip, = 2d(p) + Dip,. (7)

 Here the Jacobian matrix is diagonal and negative semidefinite. Hence
 Lemke's algorithm computes a solution to the LCP, if there is one. This
 alternative linearization is along the lines suggested by Carey for iterative
 revisions of nonintegrable demand and supply functions.

 The Taylor expansion provides the best approximation in terms of
 speed of convergence near the equilibrium. It does not necessarily do so
 when it is far away from the equilibrium. In that case, some other
 linearization might perform better. Except for a few runs that applied
 the alternative linearization provided by (7) to test example 5, we have
 not explored such possibilities. In these particular experiments, the
 alternative linearization required 1-2 more iterations than our standard
 SLCP algorithm.

 2.3. The Iterative Sequence

 The solution (y, p) obtained from an LCP at iteration k could be
 outside domain F. pi = 0 for some i, i = 1, .. *, 7, for example, is outside
 domain di(.) as defined by (6.1). Consider then the price iterate pk.
 defined by

 pk = pk-1 + y(p _ pk-1), k 2 1, (8)

 where p solves the LCP and 0 < y < 1. One could optimize the iterate
 with respect to the step length -y. So far we have not used this approach,
 but have arbitrarily used Sy = 1/2 (when z is outside domain F).

 Assume that each iterate of the sequence {zk} is well-defined. What
 can we say about its convergence? Again, there are available results for
 the PE-models. Motivated by the PIES algorithm and energy model,
 Eaves (1978) has studied the application of a sequence of LCPs to this
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 partial equilibrium problem. In our notation, Eaves' result can be stated
 as follows. Let

 c -D u-E v1
 F u = a+ Dy . (9)

 K b+Ey +f(u)j

 Assume that the function f is continuously differentiable and
 has derivatives that are positive definite, but not necessarily sym-
 metric. Assume further that an equilibrium (y*, u*, v*) exists. If v0 is
 close to v *, then the iterates u k generated by the iterative process
 converge to v*.

 The correspondence between (1) and (9) is given by

 A = K1] E (v) and d(p) = (_())4

 Clearly, Eaves' result applies to our test problem 1 (the PIES energy
 model). Test examples 2 and 3 have Vd(.) = -Vf(.) negative definite.
 Also, test problem 7 (the invariant capital stock problem) has a positive
 definite gradient.

 We demonstrated above that it would be inappropriate in the Walra-
 sian model to assume the gradient of household demand is positive
 semidefinite. Definiteness seems to be too strong an assumption to make
 when income distribution is exogenous. Our computational results, which
 indicate global convergence for the Walrasian models numbers 4 and 5,
 seem to necessitate a different set of assumptions.

 Pang and Chan have developed a convergence theory for various linear
 iterative algorithms to solve nonlinear complementarity problems. They
 consider four approaches to establish the desired convergence. Some of
 these results are applicable to the PE models, but none seems immedi-
 ately relevant to the Walrasian problem. Pang and Chan discard the
 symmetry approach because the gradient matrix VF(f) usually is not
 symmetric in equilibrium models. We also observe that VF(z-) is not
 positive definite as required by the norm-contraction method, nor is it
 an H-matrix with positive diagonals as required by the vector-contraction
 method, and finally, F(z) is concave and not convex (as required by the
 monotone approach).

 Assume that the process converges and terminates at iteration K. By
 construction, for example by solving the LCP at iteration K, ZK? 0.
 Next, by the termination tests, Fi(ZK) > -3 and zjFi(ZK) < e for all i.
 Hence the conditions F(z ) > 0 and z TF(z) -0 are approximately satisfied,
 and ZK is an approximate equilibrium.
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 2.4. Computational Effort

 The cost of the iterative algorithm is the main focus of this paper and

 will be reported in the next sections. In this section, we make several
 brief comments.

 In the final iterations (near the equilibrium), the set of basic variables
 typically remains the same. Thus, in iteration k, we invert the matrix
 (B) corresponding to the same basic variables as in the previous iteration.

 The computational work involved in this inversion is, because of facto-

 rization of the basis, less than was necessary to execute Lemke's algo-
 rithm. If B-lqk has negative components, showing that the chosen basis

 is not feasible, we apply Lemke's method to the transformed problem

 (B-lqk, B-lMk). That is, we restart Lemke's method at this solution
 instead of at the origin. The rationale is that the solution of the preceding

 LCP is close to the solution of the present. Our basis for doing so is the
 result.

 If M is positive semidefinite, so is every principal transform of M. (See
 Cottle and Dantzig.)

 The operations involved in inverting B amount to a sequence of principal
 transforms of M. As noted above, M might not be positive semidefinite.
 In such cases, we can only hope that the desired property carries over.
 That is, if Lemke's method computes a solution to (q, M), then it also

 computes a solution to (B-'q, B`M). This result turned out to hold for
 every run performed for this report.

 Our program uses Tomlin's (1978) program LCPL. (See also Tomlin
 1976a, b.) His code is based on sparse matrix factorization and updating
 techniques. It allows the user to specify a partial basis which the program
 completes and uses as the initial basic solution. We have stripped off all
 input and output routines and written our own interface, which essen-
 tially avoids writing (and reading) each LCP in MPS-format onto some
 intermediate file.

 3. NUMERICAL TEST PROBLEMS

 Eight of our test problems are taken from the existing literature on
 the computation of equilibria. The ninth problem is an application to
 the Norwegian economy. These problems include 3 partial and 6 general
 equilibrium models of which 4 are of Walrasian type. They range from
 small (13-14 variables) to medium-sized (160-170 variables). The com-
 mon feature of these models is their inequalities, which result mainly
 from alternative activities (8 out of 9 problems), but also from institu-
 tional constraints on prices (2 problems).

 Tables I and II present some statistics on the test problems and the
 resulting LCP-formulations. A more detailed description of the problems
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 Solving Equilibrium Models 1241

 and specific features of their implementations is given in an Appendix
 which is available upon request from the author. Except for one model,

 the demand functions are nonlinear. Two models have nonlinear (Cobb-

 Douglas) production functions. Their input-coefficients and the demand

 functions in model 5 (derived from CES utility functions) are differen-
 tiated numerically. In the other cases, we employ analytic gradients.
 Observe that none of the LCPs are bisymmetric. Hence these problems
 cannot be formulated as optimization models.

 Because of the homogeneity of the demand functions in models 4-6

 and 9, we have stipulated a numeraire. This operation converts a column
 of the matrix to a fixed vector, and eliminates one constraint from the
 original system.

 4. COMPUTATIONAL EXPERIENCE

 In this Section we report on our computational experience in solving

 9 test problems, and compare it with that of other researchers.
 All 9 problems were solved successfully. When initiated at a reasonable

 starting point, the process typically converged in 4 to 6 iterations. (See
 Table III.) The number of function and gradient evaluations and pivots
 are supplementary measures of computational effort. Problem 5, for
 example, has 7 demand functions with 7 diagonal and 21 nondiagonal
 elements of the corresponding gradient which must be evaluated in each
 iteration. The generalized von Thunen problem (problem 3) has 5 demand
 and supply functions which required 5 functions and 5 diagonal gradient
 elements to be evaluated. In addition, there are 2 price-dependent input
 coefficients per activity. This problem structure implied 120 evaluations
 to compute the production input coefficients and (a maximum) of 5 x
 120 evaluations to compute the coefficients of the gradient matrix.

 The CPU time refers to computations on a DEC-2060 (TOPS 20
 version 5) with pre-COMPILED (FORTRAN version 6) and LOADed,
 but not OPTIMIZEd programs using the RUN command. Input resided
 on files, and there was a fair amount of run statistics written to files
 during execution.

 Problems 1 and 8 were solved (partly manually) before the iterative
 process was programmed. The iterates were observed to converge, and
 the processes were terminated after 3 iterations.

 Problems 2 and 3 were constructed and solved by MacKinnon (1976)
 using a fixed-point method on an IBM 370/91 in 0.25 and 2.3 seconds
 CPU time, respectively. Our solutions are accurate to the same number
 of digits that he reports, and the CPU times indicate computational
 effort of the same order of magnitude. Note that the two problems are
 decomposable, allowing MacKinnon to search for an equilibrium in 4
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 Solving Equilibrium Models 1243

 supply-prices (problem 2) and 5 product and factor prices (problem 3),
 compared to our 24 and 80 dimensional LCPs. This decomposition
 certainly accounts for his favorable results. The definitive advantage of
 MacKinnon's approach is the proof for global convergence. We have
 been able to prove only local convergence, although global convergence
 is indeed suggested by our computational experiments.

 Rowse (1981, 1982) reports on efforts to solve these two problems by
 an optimization approach through the nonlinear programming code
 MINOS. (See Murtagh and Saunders 1978.) While his CPU times on
 both problems include overhead from using a standard package, they
 indicate that this optimization approach is inefficient compared to
 MacKinnon's and our results.

 Scarf (1973) presents various implementations of the fixed point
 method for solving Walrasian equilibrium problems such as problems 4
 and 5. The first implementation searches on a simplex of the full set of
 prices. Even with newer and more efficient codes with a restart and grid
 refinement procedure, this approach is inferior to ours for such "well-
 behaved" problems. See Scarf (1981).

 Several researchers have observed that fixed-point techniques, even
 with grid refinement, converge too slowly when applied to point-to-set
 maps. Improvements are obtained by switching to a Newton-type itera-
 tive process when the set of active constraints (or basic variables) remains
 constant from one iteration to the next. Awoniyi and Todd applied
 such an accelerated fixed-point algorithm to problems 4 and 5. They
 reduced the CPU time for problem 5 from 14 to 5-8.5 seconds on an
 IBM 370/165. These execution times and their other run statistics
 indicate that the SLCP algorithm is more efficient, perhaps by as much
 as a factor of 3.

 Scarf's second implementation decomposes the problem (Scarf, ch.
 5.5). The search on the simplex is now restricted to only prices of those
 commodities that are demanded by the households. For problem 5, this
 amounts to 7 out of 14 prices. The tactic almost halved the CPU time.
 Other researchers have appealed to a "nonsubstitution" theorem. At the
 cost of additional side calculations, they have been able to search on a
 simplex of only resource prices. This approach makes rather detailed
 analyses feasible. (See Shoven.) The CPU time, however, may still be
 high, as experienced by Sierra (1982) in an analysis of the Mexican
 economy. Using Merrill's (1972) code, his fixed-point approach required
 15 minutes on a DEC 2060 computer while a Newton process, applied to
 a specified set of equations, did the job in 2 minutes.

 An equilibrium price vector must be nonnegative and also satisfy the
 nonprofitability constraints A Tp < 0. This condition is the basis for
 Scarf's third implementation (Scarf, ch. 6.4). Scarf obtains equilib-
 rium prices and activity levels by solving a pure trade model with as
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 many commodities as there are extreme points ir 1, , ir of

 {A r T< 0,r >- 0 intersected with the unit simplex.
 Looking now in other quarters of the literature we find only Manne,

 Chao and Wilson (1980). They report that their MCW-algorithm (a
 sequence of linear programming problems), used 22.7 seconds CPU time
 on an IBM 370/168 computer to solve problem 5.

 Manne and Preckel (1982) constructed the 2RT model, a two-region
 multiperiod neoclassical Walrasian equilibrium model with nonlinear
 production. They report using 10, 15 and 32 minutes for solving, respec-
 tively, 9, 11, 13 time period models with Merrill's fixed-point code on a
 DEC 2060 computer. Our results are obtained on the same computer and
 indicate an order of magnitude saving for 10 period models (and possibly
 two orders of magnitude for 15 time period models). Note that they
 solved the problem in reduced form with the fixed point code searching
 on a 3T dimensional price simplex. Our system uses a structural form of
 the model and involves on the order of liT prices and activities.

 Preckel (1983) has compared 4 algorithms applied to the 2RT model:
 a fixed-point algorithm (Broadie's (1983) OCTASOLV), a quasi-
 Newton process, the SLCP algorithm and the MCW-algorithm. For
 T = 3 time periods, the first three algorithms solved their respective
 models in about the same CPU time and to approximately the same
 accuracy. Based on his reported CPU times for T 3, 6 and 9 time
 periods, we have fitted the function

 CPU-seconds = aTb,

 where a and b are parameters. The results are

 Fixed-point: a = 0.07, b = 3.8.
 Quasi-Newton: a- 0.28, b = 2.6.
 LCP: a = 0.05, b = 1.9.

 Three observations are, of course, too few to draw firm conclusions, but
 these results are suggestive of the relative merit of the three approaches
 applied to this particular type of equilibrium problem. (The MCW-
 algorithm both failed to obtain the same accuracy as the other codes for
 T = 3 and used considerably longer CPU time.)

 Dantzig and Manne (1974) solved the invariant capital stock problem
 by approximating the utility function by a piecewise linear function and
 formulating a linear complementarity problem directly. They based the
 grid points for this approximation on the solution reported by Hansen
 and Koopmans. The LCP had 32 columns and rows and was solved once
 in 2.5-3 seconds on an IBM 360/67 computer. It is safe to conclude that
 iterative linearization (yielding 14 dimensional LCPs) is more efficient
 and accurate than a once-and-for-all piecewise linear approximation.
 Josephy (1979a) has solved this model by an algorithm similar to ours.
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 For our 9th test problem, the NORGE model, there are no comparable

 results available from other algorithms. Because of several types of
 specific features, the solution procedure requires a considerable amount
 of computation. Nonetheless, the execution times are only 90 seconds

 from a cold start (all variables at their base year levels) and 15 seconds
 from a warm start (the solution of a similar scenario).

 In some respect NORGE is larger than Sierra's Mexico model. Sierra's

 experience of 2 minutes (on the same computer) with a Newton-process
 and from a warm start is therefore puzzling. There is, however, a basic
 difference between the two systems of equations to which the algorithms
 are applied. Sierra's approach applies to a subset of the commodity
 constraints, (1.2), and makes several side calculations. The CP format
 encompasses both commodity and nonprofitability constraints. It is a
 larger system, but it also addresses all relevant information simultane-
 ously. The SLCP iterates might therefore provide more accurate approx-
 imations to the entire model, and this property might explain why it
 converges faster.

 The computing times for these algorithms are sensitive to the arbitrary
 choice of starting point. On problem 2, price vectors (c, c, * * *, c) with c
 ranging from 0.01 to 90 were used. The number of iterations ranged
 between 4 and 10, and increased with extremely low or high values
 of c. The CPU time ranged between 1 and 1.8 second, indicating 0.14
 second for each of the last iterations. Similar results are obtained with
 problem 3.

 General equilibrium problems 4 and 5 are solved for widely differing
 starting points. On problem 4, initial prices p? = 0.95, pQ = 0.01, for all
 i, i # j, and for j = 1, 2, ** , 6 were used. Forj = 2, ** , 5 the processes
 terminated after 5 or 6 iterations, and for j = 1 and 6, they took 10
 iterations. Each additional iteration required approximately 0.2 second.
 These initial prices are close to the vertices of the price simplex and are
 thus similar to the vertex-start used by Scarf in the early versions of
 fixed-point algorithms. Our experience with model 5 is analogous.

 Later experiments with small-scale Walrasian equilibrium problems
 such as Scarf's (1960) unstable exchange equilibrium, Kehoe's (1980)
 multiple equilibrium model and others, also indicate convergence over
 large regions. (See Mathiesen and Rutherford 1983.) Scarf's exchange
 model, however, provides a counterexample to conjectured global conver-
 gence. That is, there are starting points ji for which no LCPi(ji) for
 i = 1, . . ., m has a solution. Hence the SLCP algorithm fails to compute
 the next iterate. (See Mathiesen 1985.)

 5. CONCLUDING REMARKS

 We have presented the complementarity problem as a modeling format
 for partial and general equilibrium problems. This format includes as
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 special cases the computable general equilibrium (CGE) problem (a
 formulation based on neoclassical utility and production functions), the
 activity analysis general equilibrium (AGE) of Ginsburgh and Wael-
 broeck, and mixed models with an activity analysis specification of a
 particular sector embedded within a neoclassical formulation of the
 remaining economy. The format also allows for additional "system con-

 straints" such as single-period balance of payment constraints (the 2RT-
 model) or minimum wages and interest rates (Mathiesen and Steigum).

 The SLCP algorithm solves these models as a sequence of linear
 complementarity problems. We have reported on our computational
 experience in applying this algorithm to 9 different equilibrium models
 whose common characteristics were nonintegrability and inequalities.
 Inequalities result mainly from alternative production activities (8 of 9
 models), but also from institutional constraints on prices (2 models). All
 models involve nonlinear demand or production functions.

 The algorithm has successfully computed the equilibrium for all 9
 problems. Our computational experience comprises several runs with
 each of these models. By any measure, the computational effort is low,
 compared to other algorithms applied to the same problems. Furthermore,
 the CPU time increases only modestly when initiating the process at
 starting points far removed from the equilibrium. The accuracy of an
 approximate equilibrium is easily improved, since the SLCP algorithm
 is equivalent in the tail to a Newton process.

 Based on reasonable assumptions regarding the structure of a partial
 equilibrium model, local convergence of the SLCP algorithm can be
 proved. For the general equilibrium model, the traditional assumption of
 a negative (semi)-definite Jacobian matrix is questionable. We have not
 been able, however, to present alternative theoretical results that support
 our computational experience with these models.

 Scarf (1973) discusses several intuitive approaches to the computation
 of equilibria and point out their pitfalls. Scarf's fixed-point code and its
 descendents are guaranteed to compute an (approximate) equilibrium if
 one exists. More recent developments such as acceleration schemes
 (Awoniyi and Todd), and decomposition (Shoven, and Sierra), increase
 the efficiency of the fixed-point codes. In view of our computational
 results, however, it seems that these codes still require too many itera-
 tions and hence too many function evaluations and pivots. The small
 steps that underlie the proof also inhibit efficiency. Needless to say, our
 algorithm requires more structure, namely that functions are continu-
 ously differentiable. This feature, however, is usually found in the em-
 pirical equilibrium models to which fixed-point codes are applied.

 Some researchers have suggested that the complementarity format
 involves too large a model. Scarf (ch. 6.4) showed that the explicit
 recognition of the dual cone of the production set significantly improved
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 the efficiency of a fixed point technique. Our computational experience
 indicates a similar conclusion. The advantage, in terms of an improved
 iterate, from simultaneously solving the entire set of (linearized) equilib-
 rium conditions seems to outweigh the added computational burden. Our
 results on the "NORGE" and the "2RT" models, compared to Sierra's

 and Preckel's work, suggest that further research into this and similar
 algorithms will prove worthwhile.

 We know that the SLCP algorithm does not converge globally for an
 arbitrary Walrasian model when initiated at any starting point; this
 convergence property is reserved for fixed-point algorithms. In view of
 the indications of global convergence on problems 4 and 5, however,
 theoretical results on the performance of the algorithm would be of
 interest.
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