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Samuelson in 1950
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Paul Samuelson

• University of Chicago (B.A.) – Harvard University (Ph.D.),

• Enrolled college at age 16

• Full professor at age 32

• First American to win the Nobel Memorial Prize in Economic
Sciences: “[Samuelson] has done more than any other contemporary
economist to raise the level of scientific analysis in economic theory.”

• Recruited numerous Nobel laureates at MIT: Robert M. Solow, Paul
Krugman, Franco Modigliani, Robert C. Merton and Joseph E.
Stiglitz.
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A Theory which is both True and Nontrivial

Stanislaw Ulam once challenged Samuelson to name one theory in all of
the social sciences which is both true and nontrivial.

Several years later, Samuelson responded with David Ricardo’s theory of
comparative advantage:

That it is logically true need not be argued before a mathematician;
that is not trivial is attested by the thousands of important and
intelligent men who have never been able to grasp the doctrine
for themselves or to believe it after it was explained to them.
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Activity Analysis

When there are a discrete set of production technologies, each
characterized by a marginal cost and a capacity, the supply curve becomes
a step function corresponding to the sorted sequence of plant capacities.

Consider a market in which the commodity is supply by the following four
technologies:

cj kj
a 2 2
b 5 2
c 7 4
d 10 ∞
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Activity Analysis Supply Curve
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Market Equilibrium with Activity Analysis

Consider a market equilibrium when there are multiple discrete supply
technologies. As in the conventional continuous Marshallian model, the
equilibrium price and quantity is defined by the intersection of the supply
and demand schedules:
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Market Equilibrium and Social Surplus

A convenient property of the competitive market allocation is that it
maximizes social surplus, as illustrated in this figure:
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Constrained Optimization Approach

Let Qt ≥ 0 denote output from technology t, P denote the equilibrium price, PS
and CS denote producer and consumer surplus. The market equilibrium then
solves:

maxPS + CS

subject to:

• Market supply equals technology output:

S =
∑
t

Qt

• Market equilibrum price is on the demand curve:

P = 10− 5

6
S

• Producer surplus is the area below the market price and above the cost of
production: PS =

∑
t(P − ct)Qt

• Consumer surplus is the area under the demand curve: CS = (10−P)
2 S

11 / 41



Geometric Interpretation of the Equilibrium
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GAMS Code – Sets and Data

$title surplus maximization and market equilibrium

set t /a,b,c,d/;

table tech Technology

cost cap

a 2 2

b 5 2

c 7 4

d 10 inf;

parameter c(t) Cost by technology;

c(t) = tech(t,"cost");
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GAMS Code – Variable Declaration

nonnegative variables P,PS,CS,s,Q(t);

free variable obj;

equations price, supply, psurplus, csurplus, objective;

price.. P =e= 10 - S*10/6;

supply.. S =e= sum(t, Q(t));

psurplus.. PS =e= sum(t, (P-c(t))* Q(t));

csurplus.. CS =e= (10 - P)*S/2;

objective.. OBJ =e= CS + PS;

Q.UP(t) = tech(t,"cap");

model equil /all/;

solve equil using nlp maximizing OBJ;
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GAMS Listing File

LOWER LEVEL UPPER MARGINAL

---- VAR P . 5.0000 +INF .

---- VAR PS . 6.0000 +INF .

---- VAR CS . 7.5000 +INF .

---- VAR Q

a . 2.0000 2.0000 3.0000

b . 1.0000 2.0000 EPS

c . . 4.0000 -2.0000

d . . +INF -5.0000

---- VAR obj -INF 13.5000 +INF .
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A Load-Duration Curve

A load-duration curve portrays electricity demand over a year in terms of
sorted decreasing quantity. Typically constructed on an hourly basis (8760
hours per year):
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Load Segment Approximation of a Load-Duration Curve

If we want to model electricity sector investment decisions, we need to
work with an approximation to the load-duration curve. It does not take
too many load segments to produce a coherent representation:
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Units Characteristics Depend on Load Factors

• Peak generating units typically operate a small number of hours per
year and tend to have low capital costs and high variable costs.

• Base load generating units typically operate a large number of hours
per year and tend to have high capital costs and low variable costs.
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Load Dispatch Curve

Investment and dispatch decisions are made jointly: when a utility invests
in new generating capacity, it must take into account overall load duration
curve and characteristics of existing capacity:
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A Canonical Electricity Investment Model

• Sets

s Load segments as illustrated above.
j Generating units, e.g. existing capacity, new investment

options
i Demand categories, e.g. residential, commercial,

industrial
f Fuel types, e.g. hard coal, soft coal, natural gas,

uranium
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Market Data

hs Segment durations, hours

p̄s , D̄is , εis Demand characteristics as might be represented by
representative price-quantity paris and elasticities of demand
(price expressed in e per KW, demand in KW and elasticity
is dimensionless )
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Unit Level Data

φfj Heat rates describing input fuel requirements per unit
generation (PJ per KWH)

K̄j Capacities of existing generating units, TW

cf Fuel costs (e per PJ)

αjs Average availability factor for generating units, reflecting
need for repair and intermittency of renewable energy
sources (dimensionless)

rKj Rental price of new generating capacity, (e per KW per
year), typically computed on the basis of capital cost,
depreciation rate, capital cost and fixed maintenance and
operating costs:

rKj =

{
pKj (r + δ) + cMj New plants

cMj Extant plants

pMj Variable maintenance and operating costs, (e per KWH)
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Variables which Determine an Equilibrium

• Primal Variables : quantities

Xjs Generation and dispatch
Kj Generating utilization (extant and new vintage)

• Dual Variables : prices

ps Wholesale prices by load segment
πjs Profit margins
µj Shadow price on installed (extant) capacity
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Primal Equilibrium Conditions

• Aggregate demand:

Ds =
∑
i

D̄is (1− |εis |(ps/p̄s − 1))

• Market clearance:
Ds =

∑
j

Xjs ⊥ ps

• Feasibility of generation:

αjsKj ≥ Xjs ≥ 0 ⊥ πjs ≥ 0

• Capacity:
K̄j ≥ Kj ⊥ µj ≥ 0
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Dual Equilibrium Conditions

• Profitability – arbitrage in dispatch:

πjs + pMj +
∑
f

cf φfj ≥ ps ⊥ Xjs ≥ 0

• Profitability – arbitrage in investment:

rKj + µj ≥
∑
s

hsαjsπjs ⊥ Kj ≥ 0
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Integrability: Equilibrium Allocation = Optimal Allocation

max
∑

i ,s p̄sDis

(
1 + 1/|εis |(1− Dis

2D̄is
)
)

−
∑

sj Xjshs
(∑

f cf φjf + pMj

)
−
∑

j Kj r
K
j

subject to: ∑
is

Dis =
∑
j

Xjs

αjsKj ≥ Xjs ≥ 0

K̄j ≥ Kj

Kj ≥ 0

27 / 41



Outline

• Paul Samuelson

• Activity Analysis and Market Equilibrium

• Application: Electricity Investment and Dispatch

• Spatial Price Equilibrium

28 / 41



Spatial Price Equilibrium

i Supply nodes

j Demand nodes

cij Unit shipment costs

µi Unit (marginal) production cost

S̄i Supply limit (upper bound)

D̄j Demand quantity
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Least Cost Production and Distribution

min
∑
i

µiSi +
∑
i ,j

cijXij

subject to:

Si ≥
∑

j Xij∑
i

Xij ≥ Dj

Dj = D̄j , Si ≤ S̄i
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GAMS Code

$title A Calibrated Spatial Price Equilibrium Model

$ontext

We first formulate a linear programming model which minimizes

the cost of production and distribution on a transportation

network with supply nodes and demand nodes. Using the primal

and dual values from the LP model we calibrate an economic

equilibrium model with price elastic demand and supply for

which the reference equilibrium corresponds precisely to the

LP optimum.

$offtext

* Generate a random instance of the problem:

set i Supply nodes /1*5/

j Demand nodes /1*5/;

parameter d0(j) Demands

s0(i) Supply

mu(i) Marginal cost of production,

c(i,j) Transport cost;

c(i,j) = uniform(0,1);

d0(j) = round(uniform(1,100));

s0(i) = round(uniform(1,200));

mu(i) = uniform(0.5,1.5);
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GAMS Code (cont)

* Here I illustrate the lazy way to declare variables. When

* a variable is declared with no arguments, the dimensionality

* is inferred at the first use and the domains are assumed

* to be the universe, e.g. X(*,*).

* The disadvantage of this approach is that domain errors

* may be undetected and difficult to trace. It is a good idea

* to use explicit domain whereever possible:

nonnegative variables X,S,D;

free variable TOTCOST Objective function;

equations objdef, supply, demand;

objdef.. TOTCOST =e= sum((i,j), c(i,j) * X(i,j)) + sum(i, mu(i)*S(i));

* Orient both equations as >= so that the Lagrange multipliers

* are non-negative:

supply(i).. S(i) =g= sum(j, X(i,j));

demand(j).. sum(i, X(i,j)) =g= D(j);

model transport /all/;

* Fix demand and place an upper bound on supply in order

* that the marginal cost of supply is included in the

* shadow prices at the equilibrium point:

S.UP(i) = s0(i); D.FX(j) = d0(j);

solve transport using LP MINIMIZING TOTCOST; 32 / 41



LP Solution

Formulated as a capacity-constrained supply with constant marginal cost,
the shadow prices at supply and demand nodes reflect both the production
and transportation costs:

---- EQU supply

LOWER LEVEL UPPER MARGINAL

1 . . +INF 1.3821

2 . . +INF 1.3298

3 . . +INF 1.2227

4 . . +INF 1.1282

5 . . +INF 1.2468

---- EQU demand

LOWER LEVEL UPPER MARGINAL

1 . . +INF 1.5539

2 . . +INF 1.2878

3 . . +INF 1.3783

4 . . +INF 1.3969

5 . . +INF 1.3534
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Calibrated Supply and Demand Functions

q̄

p̄

q

p
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Calibrated Supply and Demand Functions

Given the following data:

q̄ Reference quantity supplied (and demanded)

p̄ Reference demand price

µ̄ Reference supply price

ε Magnitude of the price elasticity of demand

η Magnitude of the price elasticity of supply

We can write the demand and supply functions as:

d(p) = d̄

(
1− ε

(
p

p̄
− 1

))
and

s(µ) = s̄

(
1 + η

(
µ

µ̄
− 1

))
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Mathematical Facts

1

d

dQ

∫ Q

q=0
p(q)dq = p(Q)

2 The first order conditions for

max
∑
i

fi (Si ) +
∑
j

gj(Dj)

s.t.
Si ≥

∑
j Xij ⊥ µi∑

i Xij ≥ Dj ⊥ pj

are
dfi (Si )

dSi
= −µi

and
dgj(Di )

dDi
= pj
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Integrable Demand

The calibrated inverse demand function corresponding to Dj(pj) is

pj(q) = p̄j
(
1 +

(
1− q/D̄j

)
/εj
)

and the calibrated inverse supply function corresponding to Si (µi ) is

µi (q) = µ̄i
(
1 +

(
q/S̄i − 1

)
/ηi
)

Integrating, we have consumer surplus

CSj(Dj) =

∫ Dj

pj(q)dq = p̄jDj

(
1 +

(
1−

Dj

2D̄j

)
/εj

)
and total cost

TCi (Si ) =

∫ Si

µi (q)dq = µ̄iSi

(
1 +

(
Si

2S̄i
− 1

)
/ηi

)
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The Integrated Equilibrium Model

max
∑
j

∫ Dj

pj(q)dq︸ ︷︷ ︸
CSj (Dj )

−
∑
i

∫ Si

µi (q)dq︸ ︷︷ ︸
TCi (Si )

−
∑
ij

cijXij

s.t.
Si ≥

∑
j Xij ⊥ µi∑

i Xij ≥ Dj ⊥ pj

Xij ≥ 0
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Price-Responsive Demand (QCP Formulation)

* Extract the solution with fixed demand as a reference equilibrium:

parameter muref(i) Reference marginal cost

pref(j) Reference demand price

sref(i) Reference supply

dref(j) Reference demand

epsilon(j) Demand elasticity at the reference point;

muref(i) = supply.m(i); pref(j) = demand.m(j); sref(i) = S.L(i); dref(j) = D.L(j);

epsilon(j) = uniform(0.5, 2);

free variable SURPLUS Social surplus;

equation csurplus Social surplus with horizontal supply curves (Cs);

csurplus.. SURPLUS =e= -sum((i,j), c(i,j) * X(i,j)) - sum(i, mu(i)*S(i))

+ sum(j, pref(j) * D(j) * (1 + (1-0.5*D(j)/dref(j)) / epsilon(j)));

model elasticdemand /supply, demand, csurplus/;

* Remove upper and lower bounds on demand:

D.LO(j) = 0; D.UP(j) = +inf;

solve elasticdemand using QCP maximizing SURPLUS;
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QCP Solution

Formulated as a maximization problem, Lagrange multipliers on the supply
and demand markets change sign, but they have identical magnitude as
compared with the LP solution. This implies that we have “replicated the
benchmark equilibrium”, having removed upper and lower bounds on
demand but introduced the consumer surplus measure which results in no
change in prices or quantities.

---- EQU supply

LOWER LEVEL UPPER MARGINAL

1 . . +INF -1.3821

2 . . +INF -1.3298

3 . . +INF -1.2227

4 . . +INF -1.1282

5 . . +INF -1.2468

---- EQU demand

LOWER LEVEL UPPER MARGINAL

1 . . +INF -1.5539

2 . . +INF -1.2878

3 . . +INF -1.3783

4 . . +INF -1.3969

5 . . +INF -1.3534
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Price-Responsive Supply and Demand (QCP Formulation)

parameter eta(i) Price elasticity of supply from node i;

eta(i) = uniform(0.5, 2);

equation ssurplus Social surplus with price elastic supply;

ssurplus.. SURPLUS =e= -sum((i,j), c(i,j) * X(i,j))

+ sum(j, pref(j) * D(j) * (1 + (1-0.5*D(j)/dref(j)) / epsilon(j)))

- sum(i, muref(i) * S(i) * (1 + (0.5*S(i)/sref(i)-1)/eta(i)));

model equilibrium /supply, demand, ssurplus/;

* Remove the upper bound so as to accommodate price-elasticity:

S.UP(i) = +inf;

solve equilibrium using QCP maximizing SURPLUS;
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