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The Ordinary Demand Function

The problem of preference maximization can be written as

max u(x)

such that
px ≤ m

x ≥ 0

The demand function relates commodities prices p and m to the
demanded bundle. We denote this as x(p,m).
When preferences are strictly convex, there is a unique bundle which
maximizes utility.
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Indirect Utility

Provided that preferences are well behaved, the consumer’s value-function
can be written as:

v(p,m) = max u(x)

such that
px = m

We refer to v() as the indirect utility function.
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Properties of Indirect Utility

1 v(p,m) is nonincreasing in p and nondecreasing in m. In other
words, “increasing prices cannot be good” while “increasing income
cannot be bad”.

2 v(p,m) is homogeneous of degree 0 in (p,m). Proportional scaling
prices and income does not change demand. This is a model which
depends on relative rather than absolute price level.

3 Provided that the underlying preferences are convex, the indirect
utility function v(p,m) is quasiconvex in p.

4 v(p,m) is continuous for all nonzero prices and income.
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The Expenditure Function

Provided that welfare is monotonically increasing in income, we can invert
the indirect utility to obtain the expenditure function:

e(p, u) = minpx

such that
u(x) ≥ ū

The expenditure function relates the minimum cost of achieving a fixed
level of utility (ū).
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Properties of the Expenditure Function

1 e(p, u) is nondecreasing in p. Increasing prices cannot reduce cost.

2 e(p, u) is homogeneous of degree 1 in p.

3 e(p, u) is concave in p.

4 The expenditure-minimizing bundle to achive any level of utility for
commodity i is given by:

hi (p, u) =
∂e(p, u)

∂pi
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Important Identities

1 e(p, v(p,m)) ≡ m. The minimum expenditure necessary to reach
utility v(p,m) is m.

2 v(p, e(p, u)) ≡ u. The maximum utiliity from income e(p, u) is u.

3 xi (p,m) ≡ hi (p, v(p,m)). The Marshallian demand at income m is
the same as the Hicksian demand at utility v(p,m).

4 hi (p, u) ≡ xi (p, e(p, u)). The Hicksian demand at utility u is the same
as the Marshallian demand at income e(p, u).
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Roy’s Identity

The Marshallian (ordinary) demand function is related to the indirect
utility function as:

xi (p,m) = −
∂v(p,m)
∂pi

∂v(p,m)
∂m

provided that the functions are well-defined and m > 0.
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Proof of Roy’s Identity

Proof.

Suppose that x∗ yields maximal utility of u∗ at (p∗,m∗). Hence

x(p∗,m∗) ≡ h(p∗, u∗)

and
u∗ = v(p, e(p, u∗)) ∀p

Differentiating this last relation:

0 =
∂v(p∗,m∗)

∂pi
+
∂v(p∗,m∗)

∂m

∂e(p∗, u∗)

∂pi

we then have:

xi (p
∗,m∗) ≡ hi (p

∗, u∗) ≡ ∂e(p∗, u∗)

∂pi
= −∂v(p∗,m∗)/∂pi

∂v(p∗,m∗)/∂m
.
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Money-Metric Utility

We define m(p, x) as follows:

m(p, x) ≡ e(p, u(x))

This can be called a money metric utility function. m(p, x) is the
minimum expenditure required when prices are p to achive the utility
consistent with consumption bundle x.
A dual form of this function is the money metric indirect utility function:

µ(p;q,m) ≡ e(p, v(q,m)).
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A Word Problem

Thomas lives in Ann Arbor where he currently spends 30% of his
income on rent. He has an employment offer in Zürich which
pays 50% more than he currently earns, but he is hesitant to take
the job because rental rates in Zürich are three times higher than
in Ann Arbor. Assuming that Thomas has CES preferences with
elasticity of substitution σ; on purely economic grounds, should
he move?

As is the case for all interesting questions in economics, the only good
answer to this problem is “It depends.”.
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Intuition

Thomas’s offer in Zürich does not pay him enough to live exactly the
lifestyle that he enjoys in Ann Arbor, as he would need a 60% raise to cover
rent and consumption. The elasticity of substitution is key. If it is high, he
more willing substitutes consumption of goods and services for housing
and thereby lowers his cost of living in Zürich. On the other hand, if the
elasticity is low, he is “stuck in his ways”, and the move is a bad idea.
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Calibration to a Benchmark Equilibrium

We are given information about Thomas’s choices in Ann Arbor. This
information is essentially an observation of a benchmark equilibrium,
consisting of the prevailing prices and quantities of goods demand. The
benchmark equilibrium data together with assumptions about elasticities
are used to evaluate Thomas’s choices after a discrete change in the
economic environment. The steps involved in solving this little textbook
model are identical to those typically employed in applied general
equilibrium analysis.
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Graphical Representation
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Preferences

The utility function:

U(C ,H) = (αC ρ + (1− α)Hρ)1/ρ

Exponent ρ is defined by the elasticity of substitution, σ, as

ρ = 1− 1/σ.

The model of consumer choice is:

maxU(C ,H) s.t. C + pHH = M
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Demand

Derivation of demand functions which solve the utility maximization
problem involves solving two equations in two unknowns:

∂U/∂H

∂U/∂C
=

(1− α)Hρ−1

αC ρ−1
= pH ;

hence

H

C
=

(
1− α
α pH

)σ
Substituting into the budget constraint, we have:

H =
M

pH +
(
α pH
1−α

)σ =
(1− α)σMp−σH

ασ + (1− α)σp1−σ
H

and

C =
M

1 + pH

(
1−α
α pH

)σ =
ασM

ασ + (1− α)σp1−σ
H
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Calibration

It is conventional in applied general equilibrium analysis to employ
exogenous elasticities and calibrated value shares. If we follow this
approach, σ is then exogenous and α is calibrated.
Choosing units so that the benchmark price of housing (p̄H) is unity, we
have:

θ = p̄HH̄/M̄

Substitute into the demand function:

1 +

(
α

1− α

)σ
=

M̄

H̄
=

1

θ
;

and then solve for the preference parameter α:

α =
(1− θ)1/σ

θ1/σ + (1− θ)1/σ
.
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Money Metric Utility

Substitute for α in U(C ,H), and denoting the base year expenditure on
other goods as C̄ = (1− θ)M̄, we have

U(C ,H) = κ
(

(1− θ)1/σC ρ + θ1/σHρ
)1/ρ

where the κ is a constant which may take on any positive value without
altering the preference ordering. It is convenient to assign this value to the
benchmark expenditure, so that utility can be measured in money-metric
units at benchmark prices.
Noting that θ1/σ = θ1−ρ, we then can write the utility function as:

Ũ(C ,H) = M̄

(
(1− θ)

(
C

C̄

)ρ
+ θ

(
H

H̄

)ρ)1/ρ
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Indirect Utility

Formally, we have:

V (pH ,M) = U(C (pH ,M),M(pH ,M)) =
M(

ασ + (1− α)σp1−σ
H

)1/(1−σ)

In money-metric terms, we can use benchmark income to normalize the
utility function:

Ṽ (pH ,M) =
M

(1− θ + θp1−σ
H )1/(1−σ)
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Demand Functions – Calibrated Share Form

H = H̄
Ṽ (pH ,M)

M̄

(
pU
pH

)σ
= H̄

M

pUM̄

(
pU
pH

)σ
C = C̄

Ṽ (pH ,M)

M̄

(pU
1

)σ
= C̄

M

pUM̄

(pU
1

)σ
where

pU =
(
1− θ + θp1−σ

H

)1/(1−σ)
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Should Thomas Move?

Thomas’s welfare level in Zürich can be easily computed in money-metric
terms as:

Ṽ (pH = 3,M = 1.5) =
1.5

(0.7 + 0.3× 31−σ)1/(1−σ)

This expression cannot (to my knowledge) be solved in closed form,
however it is easily to solve using Excel. The critical value for σ is that
which equates welfare in Zürich with welfare level in Ann Arbor, i.e.
Ṽ = 1. The numerical value is found to be σ∗ = 0.441. The general
dependence of welfare on the θ and σ can be illustrated in a contour
diagram.
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Dependence of Welfare on Benchmark Shares and Elasticity
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GNUPLOT Script

set auto

set style data lines

set xlabel "Housing Value Share"

set ylabel "Elasticity of Substitution"

set view map

set contour base

set xrange [0:50]

set yrange [0:2]

set cntrparam levels discrete 0

set pm3d

set palette gray positive

unset title

unset key

unset colorbox

unset clabel

set isosamples 51,50; set samples 51,50

set xtics

set ytics

unset surface

splot 1.50/(1-x/100+x/100*3**(1-y))**(1/(1-y))-1
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CES Technology

A constant-elasticity-substitution production function can be defined as:

y = f (x) =

(∑
i

aix
ρ
i

)1/ρ

where ai > 0 ∀i

The CES production function may alternatively be written as:

f (x) = φ

(∑
i

αix
ρ
i

)1/ρ

where φ > 0, αi > 0 and
∑

i αi = 1.
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Two Algebraic Facts

Two key algebraic identities are employed in this and subsequent
derivations. For arbitrary real numbers, a, b and c , we have:(

ab
)c

= abc

and

abac = ab+c
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Equivalence of CES Functions

We need to show that there are values of φ and αi in terms of ai and ρ for
which

φ

(∑
i

αix
ρ
i

)1/ρ

=

(∑
i

aix
ρ
i

)1/ρ

where φ > 0, αi > 0 and
∑

i αi = 1.

For any β > 0

f (x) =

(
β

β

∑
i

aix
ρ
i

)1/ρ

= β1/ρ

(∑
i

ai
β
xρi

)1/ρ

Let β =
∑

i ai , αi = ai/β and φ = β1/ρ.
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Returns to Scale

f (x) exhibits constant returns to scale, i.e.

f (λx) = λf (x) ∀λ > 0

f (λx) =

(∑
i

ai (λxi )
ρ

)1/ρ

=

(∑
i

aiλ
ρxρi

)1/ρ

=

(
λρ
∑
i

aix
ρ
i

)1/ρ

= (λρ)1/ρ

(∑
i

aix
ρ
i

)1/ρ

= λf (x)
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Demand Fucntions

Cost-minimizing CES demand functions are:

xi =

(
aic(p)

pi

)σ
where

σ =
1

1− ρ
and

c(p) =

(∑
i

aσi p
1−σ
i

)1−σ
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Deriving the Demand Function

The classical optimization problem is solved using the Lagrangian:

L =
∑
i

pixi − λ (f (x)− 1)

The Lagrange multiplier, λ, equals the marginal cost of output, c .1 Hence,
the first order condition for xi reduces to:

∂L
∂xi

= pi − c
∂f

∂xi
= 0

1Note that because f (x) exhibits constant returns to scale, this is also the average
cost of production.

29 / 48



Deriving the Demand Function (cont.)

pi = c
∂

∂xi

∑
j

ajx
ρ
j

1/ρ

= caix
ρ−1
i

(∑
i

aix
ρ
i

)1/ρ−1

= caix
ρ−1
i

(∑
i

aix
ρ
i

)(1−ρ)/ρ

= caix
ρ−1
i


(∑

i

aix
ρ
i

)1/ρ

︸ ︷︷ ︸
=1


1−ρ

= caix
ρ−1
i
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Deriving the Demand Function (cont.)

Letting σ = 1/(1− ρ),

x
−1/σ
i =

pi
cai

.

or

xi =

(
aic

pi

)σ
.

The cost function can be found by substituting xi (p, c) into the objective
function:

c =
∑
i

pixi =
∑
i

aσi p
1−σ
i cσ = cσ

∑
i

aσi p
1−σ
i

Hence:

c(p) =

(∑
i

aσi p
1−σ
i

)1/(1−σ)

.
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Shephard’s Lemma

xi (p) =
∂c(p)

∂pi

Proof:

∂c(p)

∂pi
=

∂

∂pi

(∑
i

aσi p
1−σ
i

)1/(1−σ)

=

(
ai
pi

)σ (∑
i

aσi p
1−σ
i

)1/(1−σ)−1

=

(
ai
pi

)σ (∑
i

aσi p
1−σ
i

)σ/(1−σ)

=

(
ai
pi

)σ

(∑

i

aσi p
1−σ
i

)1/(1−σ)

︸ ︷︷ ︸
=c(p)


σ

=

(
aic(p)

pi

)σ
= xi (p)
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Allen-Uzawa Elasticity of Substitution

σij ≡
∂2c(p)

∂pi∂pj

c(p)

xixj
= σ ∀i 6= j

Proof:

∂2c(p)

∂pi∂pj
=

∂

∂pj

(
∂c(p)

∂pi

)
=

∂xi
∂pj

=
∂

∂pj

(
aic(p)

pi

)σ
= σ

(
ai
pi

)σ
c(p)σ−1 ∂c(p)

∂pj
for i 6= j

= σ

(
aic(p)

pi

)σ
︸ ︷︷ ︸

=xi

(
1

c(p)

)
∂c(p)

∂pj︸ ︷︷ ︸
=xj

= σ
xixj
c(p)

33 / 48



Allen-Uzawa Elasticity of Substitution

σij ≡
∂2c(p)

∂pi∂pj

c(p)

xixj
= σ ∀i 6= j

Proof:

∂2c(p)

∂pi∂pj
=

∂

∂pj

(
∂c(p)

∂pi

)

=
∂xi
∂pj

=
∂

∂pj

(
aic(p)

pi

)σ
= σ

(
ai
pi

)σ
c(p)σ−1 ∂c(p)

∂pj
for i 6= j

= σ

(
aic(p)

pi

)σ
︸ ︷︷ ︸

=xi

(
1

c(p)

)
∂c(p)

∂pj︸ ︷︷ ︸
=xj

= σ
xixj
c(p)

33 / 48



Allen-Uzawa Elasticity of Substitution

σij ≡
∂2c(p)

∂pi∂pj

c(p)

xixj
= σ ∀i 6= j

Proof:

∂2c(p)

∂pi∂pj
=

∂

∂pj

(
∂c(p)

∂pi

)
=

∂xi
∂pj

=
∂

∂pj

(
aic(p)

pi

)σ

= σ

(
ai
pi

)σ
c(p)σ−1 ∂c(p)

∂pj
for i 6= j

= σ

(
aic(p)

pi

)σ
︸ ︷︷ ︸

=xi

(
1

c(p)

)
∂c(p)

∂pj︸ ︷︷ ︸
=xj

= σ
xixj
c(p)

33 / 48



Allen-Uzawa Elasticity of Substitution

σij ≡
∂2c(p)

∂pi∂pj

c(p)

xixj
= σ ∀i 6= j

Proof:

∂2c(p)

∂pi∂pj
=

∂

∂pj

(
∂c(p)

∂pi

)
=

∂xi
∂pj

=
∂

∂pj

(
aic(p)

pi

)σ
= σ

(
ai
pi

)σ
c(p)σ−1 ∂c(p)

∂pj
for i 6= j

= σ

(
aic(p)

pi

)σ
︸ ︷︷ ︸

=xi

(
1

c(p)

)
∂c(p)

∂pj︸ ︷︷ ︸
=xj

= σ
xixj
c(p)

33 / 48



Allen-Uzawa Elasticity of Substitution

σij ≡
∂2c(p)

∂pi∂pj

c(p)

xixj
= σ ∀i 6= j

Proof:

∂2c(p)

∂pi∂pj
=

∂

∂pj

(
∂c(p)

∂pi

)
=

∂xi
∂pj

=
∂

∂pj

(
aic(p)

pi

)σ
= σ

(
ai
pi

)σ
c(p)σ−1 ∂c(p)

∂pj
for i 6= j

= σ

(
aic(p)

pi

)σ
︸ ︷︷ ︸

=xi

(
1

c(p)

)
∂c(p)

∂pj︸ ︷︷ ︸
=xj

= σ
xixj
c(p)

33 / 48



Allen-Uzawa Elasticity of Substitution

σij ≡
∂2c(p)

∂pi∂pj

c(p)

xixj
= σ ∀i 6= j

Proof:

∂2c(p)

∂pi∂pj
=

∂

∂pj

(
∂c(p)

∂pi

)
=

∂xi
∂pj

=
∂

∂pj

(
aic(p)

pi

)σ
= σ

(
ai
pi

)σ
c(p)σ−1 ∂c(p)

∂pj
for i 6= j

= σ

(
aic(p)

pi

)σ
︸ ︷︷ ︸

=xi

(
1

c(p)

)
∂c(p)

∂pj︸ ︷︷ ︸
=xj

= σ
xixj
c(p) 33 / 48



Calibration

A firm produces output ȳ with factor inputs x̄i at factor prices p̄i . What
values of ai are consistent with this information, taking ρ (σ) as given?
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Calibration (cont.)

CES coefficients ai can be calibrated as:

ai =
p̄i (x̄i/ȳ)1−ρ

c̄

where c̄ is benchmark unit cost:

c̄ =

∑
i p̄i x̄i
ȳ

Proof:
The demand function derived above is that which minimizes the cost of
producing one unit of output. With constant returns to scale, the cost
minimizing factor demands associated with output level y are proportional
to the unit demand, i.e.

xi (p, y) = xi (p)y =
∂c(p)

∂pi
y
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Inverting the Demand Function

Given c̄ , we can invert the factor demand function to determine ai :

x̄i =

(
aic(p̄)

p̄i

)σ
ȳ ,

hence

ai =
p̄i (x̄i/ȳ)1/σ

c̄

which is our result given ρ = 1− 1/σ.
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Unit Functions

A unit function is a function which evaluates to unity at a reference point.
If the reference point is x̄ ∈ Rn, and f (x) is a unit function, then
f (x)|x=x̄ = 1.
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The Calibrated Share Form

The calibrated form of a CES unit cost function can be written as:

c = c̄

(∑
i

θi

(
pi
p̄i

)1−σ
)1/(1−σ)

where c̄ is the benchmark unit cost and θi is the benchmark value share of
the ith input:

θi =
p̄i x̄i∑
j p̄j x̄j
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Deriving The Calibrated Share Form

Proof:

c(p) =

(∑
i

aσi p
1−σ
i

)1/(1−σ)

=

(∑
i

(
p̄i (x̄i/ȳ)1/σ

c̄

)σ
p1−σ
i

)1/(1−σ)

=

(∑
i

p̄σi x̄i
c̄σ ȳ

p1−σ
i

)1/(1−σ)

=

(
c̄1−σ

∑
i

p̄i x̄i
c̄ ȳ

(
pi
p̄i

)1−σ
)1/(1−σ)

= c̄

(∑
i

θi

(
pi
p̄i

)1−σ
)1/(1−σ)
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p1−σ
i

)1/(1−σ)

=

(
c̄1−σ

∑
i

p̄i x̄i
c̄ ȳ
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Calibrated Demand Function

The compensated demand function can be written as

xi = x̄i

(
c(p)p̄i
c̄ pi

)σ y

ȳ

Proof:

xi (p, y) =

(
aic(p)

pi

)σ
y

=

(
p̄i (x̄i/ȳ)1/σ

c̄

c(p)

pi

)σ
y

= x̄i

(
c(p) p̄i
c̄ pi

)σ y

ȳ
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Calibrated Production Function

y = ȳ

(∑
i

θi

(
xi
x̄i

)ρ)1/ρ

Proof:

y =

∑
i

ai x
ρ
i

1/ρ

=

∑
i

p̄i (x̄i/ȳ)1/σ

c̄
x
ρ
i

1/ρ

=

∑
i

p̄i x̄i

c̄ ȳ

x̄
1/σ−1
i

ȳ1/σ−1
x
ρ
i

1/ρ

=

∑
i

θi
x̄
−ρ
i

ȳ−ρ
x
ρ
i

1/ρ

= ȳ

∑
i

θi

(
xi

x̄i

)ρ1/ρ
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c̄
x
ρ
i

1/ρ

=

∑
i

p̄i x̄i

c̄ ȳ
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x̄
1/σ−1
i
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Essential Inputs: σ < 1

A CES technology with σ < 1 is calibrated to a reference point with x̄i , ȳ
and p̄i . When σ < 1, the minimum demand for good i per unit of output
is given by:

x i = θ
σ/(1−σ)
i

x̄i
ȳ

where θi is the benchmark value share of the ith input, as defined above.
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Essential Inputs: σ < 1

Consider points on the unit isoquant, i.e.∑
j

ajx
ρ
j

1/ρ

= 1

or ∑
j

ajx
ρ
j = 1
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Essential Inputs: σ < 1

The minimum input of factor i is realized when all other inputs expand
without bound. Take this limit and require that the input of good i is
sufficient to remain on the unit isoquant, hence:

lim
xj →∞
∀j 6= i

∑
j

ajx
ρ
j

 = aix
ρ
i = 1

Substitute the calibrated value of ai to obtain:

xi = θ
σ/(1−σ)
i

x̄i
ȳ
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Essential Inputs: σ < 1

reset

sigma = 0.5

theta = 0.5

rho(sigma) = 1 - 1/sigma

f(x,sigma) = ((1-theta*x**(1-1/sigma))/(1-theta))**(1/(1-1/sigma))

set xrange[0:2.5]

set yrange[0:2.5]

set xlabel ’L’

set ylabel ’K’

set title ’Calibrated CES Technology (sigma=0.5)’

plot f(x,0.5) lw 2 lc 1 notitle , \

f(x,4.0) lw 2 lc 3 notitle , \

2-x lw 2 lc 2 notitle, \

theta**(0.5/(1-0.5)) lw 1 lc 3 title "minimum K"
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Inessential Inputs: σ > 1

We define input i as essential if

lim
xi→0

f (x) = 0

When σ > 1, then none of the inputs are essential.
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Inessential Inputs: Proof

Examine the unit isoquant:

f (x) =

∑
j

ajx
ρ
j

1/ρ

= 1

or ∑
j

ajx
ρ
j = 1

If σ > 1, then ρ > 0.
It follows immediately that only one input need be provided at a positive
level. If xj = 0 ∀j 6= î , then ∑

j

ajx
ρ
j = aîx

ρ

î

and we can choose the single input to maintain feasiblity:

xî = a
−1/ρ

î
.
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Corner Solutions: NOT

When factor prices are finite and nonzero, it is never cost effective to let
any input fall to zero.

Proof:
First, note that when σ < 1, all inputs are essential. We therefore only be
concerned with cases in which σ > 1. In this case, however, the isoquant
is tangent to but does not intersect the axis.
When prices are non-zero and finite, the unit demand for xi is

xi =

(
aic(p)

pi

)σ
when is never zero when c(p) > 0 and pi <∞.
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