Slides for Chapter 6: General Equilibrium with Distortionary Taxes, Public Goods, Externalities, Optimal Taxation and Redistribution policies

Copyright: James R. Markusen, University of Colorado

6.1 Taxes in the benchmark equilibrium

A positive tax and tax revenue are present in the benchmark data. The first task: construct a micro-consistent data set. Remember that entries are values.

Each tax should be added as a row to the matrix.

Taxes are negative entries in a column indicating payments by a sector.

There is a corresponding positive entry somewhere. In the present case, the tax is redistributed lump sum to the consumer, so the consumer gets a positive entry of the tax revenue.

A zero row sum for the tax indicates that all tax receipts must be paid to someone.
Production Sectors Consumers

X sector receives 100 units of revenue, of which 20 is paid in taxes.
This 20 is received as part of the consumer's income.
These data do not indicate what type of tax is in place. It could be a tax on X output, on all the inputs, or on just one input. We interpret this as a tax on the labor input into sector X .

A crucial task: keep track of what prices firms and consumers face. It is (generally) not possible to calibrate a benchmark equilibrium with all prices equal to one.

If a production input is taxed, then if its consumer price (price received by the consumer) is chosen to be equal to one, then producer price (price paid by the producer) is specified as ($1+\mathrm{t}$).

If the producer price is unity, the consumer price is $1 /(1+\mathrm{t})$.

Given that we interpret the above data as a tax on the labor input into the X sector, the data tell us that the tax rate is 100%.

The amount paid by the X sector to labor (20) is equal to the tax revenue (20).

Thus if we set the consumer price of labor to 1 (also the price to the Y sector), then the price of labor to the X sector must be 2 .

Allow for alternative taxes in the model, including a tax on capital inputs into $X(T K X)$ and a tax on X output (TX), set to zero initially.

$$
\begin{gathered}
100 *((1+\mathrm{TLX}) * \mathrm{PL} / 2) * * 0.4 *\left(\mathrm{PK}^{*}(1+\mathrm{TKX})\right) * * 0.6 \\
=\mathrm{G}=100^{*} \mathrm{PX}^{*}(1-\mathrm{TX}) ;
\end{gathered}
$$

Counterfactual: eliminate taxes on X sector inputs and replace with a single tax on X sector output. Then taxes on both inputs.

The output tax rate will be different from the corresponding tax rate on all inputs, because the tax base is different in the two cases.

Let $m c$ denote the marginal cost of production (or producer price) and p denote the price charged to the consumer. This is how MPS/GE interprets input (ti) versus output (to) taxes.

Tax on all inputs: $\quad p=(1+t i) m c$
Tax on the output: $p(1-t o)=m c$
Note $m c$ is the tax base for the input tax, and p is the tax base for the output tax. The output tax that is equivalent to the tax on all inputs is found by:

$$
(1+t i)=1 /(1-t o)
$$

If $t i=$ TLX $=$ TKX $=0.25$ as we have assumed in our first counterfactual, then the equivalent output tax is given by to $=T X$ $=0.20$.

One more equivalence: The final counterfactual demonstrates that a 20% tax on the output of X is the same as a 25% subsidy to the production of Y .

Let t be the tax on X and s the subsidy to Y . Formally, we have

$$
\frac{p_{x}(1-t)}{p_{y}}=\frac{p_{x}}{p_{y}(1+s)}=\frac{m c_{x}}{m c_{y}} \quad \text { if } \quad t=0.20, s=0.25
$$

Absolute prices may differ depending on the choice of the numeraire, but all quantities and welfare are the same.
\$TITLE Model M6-1: 2×2 (two goods, two factors) benchmark taxes * Positive tax in the X sector in the benchmark
\$ONTEXT
Production Sectors Consumers

Assume that this is a 100\% tax on labor in X : TLX $=1$.
Let the CONSUMER price (wage) of labor equal 1: $P L=1$.
The PRODUCER price (cost) of labor in X is equal to 2:
$P L *(1+T L X)=2$
\$OFFTEXT

SCALAR TX Proportional output tax on sector X, TY Proportional output tax on sector Y, TLX Ad-valorem tax on labor inputs to X,

```
TKX Ad-valorem tax on capital inputs to X
TAXREV Total tax revenue from all sources;
```


POSITIVE VARIABLES

```
X Activity level for sector X
Y Activity level for sector Y
W Activity level for sector W
PX Price index for commodity X
PY Price index for commodity Y
PL Price index for primary factor L
PK Price index for primary factor K
PW Price index for welfare (expenditure function)
CONS Income definition for CONS
PPLX Producer price for L in X
PPKX Producer price for K in X
PPX Producer price for X
PPY Producer price for Y;
```


EQUATIONS

```
PRF_X Zero profit for sector X
PRF_Y Zero profit for sector Y
PRF_W Zero profit for sector W
MKT_X Supply-demand balance for commodity X
```

```
            MKT_Y Supply-demand balance for commodity Y
            MKT_L Supply-demand balance for primary factor L
            MKT_K Supply-demand balance for primary factor L
            MKT_W Supply-demand balance for aggregate demand
            I_CONS Income definition for CONS
                RPPLX Relation between consumer and producer price L in X
                    RPPKX Relation between consumer and producer price K in X
                    RPPX Relationship between producer and consumer price of X
                    RPPY Relationship between producer and consumer price of Y;
                    Zero profit conditions:
PRF_X.. 100*(PPLX/2)**0.4 * (PPKX)**0.6 =G= 100*PPX;
PRF_Y.. 100*PL**0.6 * PK**0.4 =G= 100*PPY;
PRF_W.. 200*PX**0.5 * PY**0.5 =G= 200*PW;
Market clearing conditions:
MKT_X.. 100*X =G= 100*W*PW/PX;
MKT_Y.. 100*Y =G= 100*W*PW/PY;
```

MKT_W.. 200*W =G= CONS/PW;
MKT_L.. 80 =G= 20*X*PPX/(PPLX/2) + 60*Y*PPY/PL;
MKT_K.. 100 =G= 60*X*PPX/PPKX + 40*Y*PPY/PK;

* Income constraints:

I_CONS.. CONS =E= 80*PL + 100*PK + 100*PX*X*TX + 100*PY*Y*TY + TLX*PL*20*X* PPX /(PPLX/2) + TKX*PK*60*X* PPX /(PPKX);

```
RPPLX.. PPLX =E= PL*(1+TLX);
RPPKX.. PPKX =E= PK*(1+TKX);
RPPX.. PPX =E= PX*(1-TX);
RPPY.. PPY =E= PY*(1-TY);
```

MODEL BENCHTAX /PRF_X.X, PRF_Y.Y, PRF_W.W,
MKT_X.PX, MKT_Y.PY, MKT_L.PL, MKT_K.PK,
MKT_W.PW, I_CONS.CONS,
RPPLX.PPLX, RPPKX.PPKX,RPPX.PPX, RPPY.PPY /;
X.L $=1$;
Y.L =1;
W.L =1;

PL. L	$=1 ;$
PX.L	$=1 ;$
PY.L	$=1 ;$
PK.L	$=1 ;$
PW.FX	$=1 ;$
PPLX.L	$=2 ;$
PPKX.L	$=1 ;$
PPX.L	$=1 ;$
PPY.L	$=1 ;$

CONS.L =200;

TX	$=0 ;$
TY	$=0 ;$
TLX	$=1 ;$
TKX	$=0 ;$

BENCHTAX.ITERLIM $=0$; SOLVE BENCHTAX USING MCP;

BENCHTAX.ITERLIM = 1000; SOLVE BENCHTAX USING MCP;

TAXREV $=100 * P X . L^{*} X . L^{*} T X+100^{* P Y} . L^{*} Y . L^{*} T Y+$ TLX*PL.L*20*X.L* PPX.L /(PPLX.L/2) + TKX*PK.L*60*X.L* PPX.L /(PPKX.L);

DISPLAY TAXREV;

```
* In the first counterfactual, we replace the tax on
* labor inputs by a uniform tax on both factors:
```

TLX = 0.25;
TKX $=0.25$;
TX $=0$;
TY = 0;

SOLVE BENCHTAX USING MCP;

```
TAXREV = 100*PX.L*X.L*TX + 100*PY.L*Y.L*TY +
    TLX*PL.L*20*X.L* PPX.L /(PPLX.L/2) +
    TKX*PK.L*60*X.L* PPX.L /(PPKX.L);
DISPLAY TAXREV;
```

```
* Now demonstrate that a 25% tax on all inputs
* is equivalent to a
* 20% tax on the output (or all outputs if more than one)
```

TLX = 0;
TKX = 0;
TX = 0.2;
TY = 0;

SOLVE BENCHTAX USING MCP;

```
TAXREV = 100*PX.L*X.L*TX + 100*PY.L*Y.L*TY +
    TLX*PL.L*20*X.L* PPX.L /(PPLX.L/2) +
    TKX*PK.L*60*X.L* PPX.L /(PPKX.L);
DISPLAY TAXREV;
```

```
* Demonstrate that a 20% tax on the X sector output is
* equivalent to a 25% subsidy on Y sector output
* (assumes that the funds for the subsidy can be raised
* lump sum from the consumer!)
```

TKX = 0;
TLX = 0;
TX = 0;
TY = -0.25;
SOLVE BENCHTAX USING MCP;
TAXREV = 100*PX.L*X.L*TX + 100*PY.L*Y.L*TY +
TLX*PL.L*20*X.L* PPX.L /(PPLX.L/2) +
TKX*PK.L*60*X.L* PPX.L /(PPKX.L);
DISPLAY TAXREV;

* Show welfare under non-distortionary taxation
TX = 0.20;

```
TY = 0.20;
```

SOLVE BENCHTAX USING MCP;
TAXREV $=100 * P X . L^{*} X . L^{*} T X+100 * P Y . L^{*} Y . L^{*} T Y+$ TLX*PL.L*20*X.L* PPX.L /(PPLX.L/2) + TKX*PK.L*60*X.L* PPX.L /(PPKX.L);
DISPLAY TAXREV;

```
TX = 0.0;
TY = 0.0;
```

SOLVE BENCHTAX USING MCP;
TAXREV $=100 * P X . L^{*} X . L^{*} T X+100 * P Y . L * Y . L * T Y+$
TLX*PL.L*20*X.L* PPX.L /(PPLX.L/2) +
TKX*PK.L*60*X.L* PPX.L /(PPKX.L);
DISPLAY TAXREV;
6.2a Labor supply and labor tax

This model is an extension of the previous model and also extends our earlier model with endogenous labor supply (M3-6) to a case with taxes in the benchmark.
Production Sectors

Consumers

Markets	A	B	W	TL	TK	CONS
PX	120		-120			
PY		120	-120			
PW			340			-340
PLS	-48	-72		120		
PKS	-72	-48			120	
PL			-100	-80		180
PK					-80	80
TAX				-40	-40	80

There are supply activities for labor (TL) and capital (TK). Labor can also be used for leisure and so the activity level for labor supply will vary.

Capital has no alternative use so it will always be completely supplied to the market.

Still, it can be convenient to specify a supply activity, since there will be two prices, one the consumer price and one the producer price (user cost) of capital.

Our choice will be that the consumer prices (prices received by the consumer) for labor and capital will be set to one.

The data matrix indicates that there is a 50\% tax on each factor in the benchmark, so the producer prices (user costs) of labor and capital will be PLS $=$ PKS $=1.5$.

We can also choose how to interpret the X and Y values, but there is only a single price for both producers and consumers, so we will interpret these as 120 units at a price of 1 for each

One useful trick for checking the calibration and noting which sectors or markets are out of balance is to not allow the model to iterate initially.
PLS.L =1.5; PKS.L =1.5;

INCOMETAX.ITERLIM = 0; SOLVE INCOMETAX USING MCP;

M32.ITERLIM = 2000; SOLVE INCOMETAX USING MCP;

Suppose that we had set the initial value of PLS.L = 1.0 instead of 1.5. Look at the listing file.
LOWER LEVEL UPPER MARGINAL

-. VAR X	.	1.000	+INF	-8.440
- VAR Y	.	1.000	+INF	-12.435
---- VAR W	.	1.000	+INF	.
-- VAR TL	-	1.000	+INF	20.000
-- VAR TK	.	1.000	+INF	.
-- VAR PX	.	1.000	+INF	.
---- VAR PY	.	1.000	+INF	.
---- VAR PL	.	1.000	+INF	.
---- VAR PK	.	1.000	+INF	
---- VAR PLS	.	1.000	+INF	-9.163
---- VAR PKS	.	1.200	+INF	8.365
---- VAR PW	1.000	1.000	1.000	EPS
---- VAR CONS	.	340.000	+INF	

The model has not solved. Recall from chapter 1 that GAMS writes inequalities in the greater-than-or-equal-to format.

The MARGINAL column of the listing file gives the degree of imbalance in an inequality, left-hand side minus right-hand side.

A positive number is ok if the associated variable is zero, as in a cost equation (marginal cost minus price is positive if associated with a slack activity).

A negative value of a marginal cannot be an equilibrium; for an activity it indicates positive profits and for a market it indicates demand exceeds supply.

In our incorrect calibration in which we give the producer price of labor too low a value, we see that there are positive profits for X, Y and negative profits for labor supply. There is an excess demand for labor and an excess supply for capital.

Most calibration errors are in the MPS/GE file itself, and not just in setting the initial values of the variables.

You could work with this file as an exercise, deliberately introducing errors (such as in the price fields) and see what happens. In any case, the iterlim = 0 statement is very useful in helping you identify where the errors are.

The other useful feature we introduce in this model is the use of the LOOP statement to simplify the repeated solving of the model over a series of parameter values. Two parameters are declared as vectors, WELFARE(S), and LABSUP(S) (for labor supply).

Then the loop statement sets the taxes at different values over the values of the set.

LOOP (S,

TXL = 0.60-0.10*ORD(S);
TXK $=0.40$ + 0.10*ORD(S);
SOLVE ALGEBRAIC USING MCP;

```
WELFARE(S) = W.L;
LABSUP(S) = TL.L;
INCOME(S) \(=((P X . L / 1.5) * X . L+(P Y . L / 1.5) * Y . L)\)
                        /((PX.L/1.5)**0.5*(PY.L/1.5)**0.5)/2;
CAPTAX(S) = TXK;
```



```
                        /((PX.L/1.5)**0.5*(PY.L/1.5)**0.5);
```

);

DISPLAY WELFARE, LABSUP, INCOME, CAPTAX, TAXREV;

ORD(S) denotes the ordinal value of a member of a set. S is an indicator and is not treated as a number in GAMS, so 0.05*S won't work.
$\operatorname{ORD}(\mathrm{S})$ is treated as a number, so this is how the set index is translated into a number. Note from the tax assignment statement that when $S=1$, the initial values of both taxes are 0.20 , our benchmark values. At $S=5$, the values are $T X L=0$, and TXK $=0.40$.

The model is repeatedly solved within the loop, and after each solve statement the value of the parameters WELFARE and LABSUP are assigned values. The loop is closed with "); "

After the loop is closed we ask GAMS to display the parameters at the end of the listing file. Note the set index for the parameters is not used in the display statement, GAMS knows what it is.
\$TITLE M6-2a.GMS: 2x2 Economy with labor supply and income tax \$ONTEXT

Production Sectors
Consumers

Markets	X	Y	W	TL	TK	CONS
PX	120		- 120			
PY		120	-120			
PW			340			-340
PLS	-48	-72		120		
PKS	- 72	-48			120	
PL			-100	-80		180
PK					-80	80
TAX				-40	-40	80

\$OFFTEXT

SETS S /1*6/;
PARAMETERS
TXL Labor income tax rate,
TXK Capital income tax rate,
WELFARE(S) Welfare,
LABSUP(S) Labor supply
INCOME(S) Money income $=$ consumption of X and Y

CAPTAX(S) The level of the capital tax
TAXREV(S) Tax revenue generated;

POSITIVE VARIABLES

X	Activity level for sector X
Y	Activity level for sector Y
TL	Supply activity for L
TK	Supply activity for K
W	Activity level for sector W
PX	Price index for commodity X
PY	Price index for commodity Y
PL	Price index for primary factor L net of tax
PK	Price index for primary factor K net of tax
PLS	Price index for primary factor L gross of tax
PKS	Price index for primary factor K gross of tax
PW	Price index for welfare (expenditure function)
CONS	Income definition for conS;

EQUATIONS

```
PRF_X Zero profit for sector X
PRF_Y Zero profit for sector Y
PRF_TL Zero profit for sector TL
```

```
PRF_TK Zero profit for sector TK
PRF_W Zero profit for sector W
MKT_X Supply-demand balance for commodity X
MKT_TK Supply-demand balance for commodity TK
MKT_TL Supply-demand balance for commodity TL
MKT_Y Supply-demand balance for commodity Y
MKT_L Supply-demand balance for primary factor L
MKT_K Supply-demand balance for primary factor K
MKT_W Supply-demand balance for aggregate demand
I_CONS Income definition for CONS;
```

Zero profit conditions:
PRF_X.. 80*PLS**0.4 * PKS**0.6 =G= 120*PX;
PRF_Y.. 80*PLS**0.6 * PKS**0.4 =G= 120*PY;
PRF_TL.. 80*PL*(1+TXL) =G= 80*PLS;
PRF_TK.. 80*PK*(1+TXK) =G= 80*PKS;
PRF_W.. 340*(PX)**(12/34) * (PY)**(12/34) * PL**(10/34)
$=G=340$ * PW;

* Market clearing conditions:

```
MKT_X.. 120*X =G= 340*W*PW * (12/34)/PX;
MKT_Y.. 120*Y =G= 340*W*PW * (12/34)/PY;
MKT_W.. 340*W =G= CONS / PW;
MKT_L.. 180 =G= 80*TL + 340*W*(10/34)*(PW/PL);
MKT_K.. 80 =G= 80*TK;
MKT_TL.. 80*TL =G= 48*X*PX/PLS + 72*Y*PY/PLS;
MKT_TK.. 80*TK =G= 72*Y*PY/PKS + 48*X*PX/PKS;
* Income constraints:
```

I_CONS.. CONS =E= 180*PL + 80*PK + 80*TL*TXL*PL + 80*TK*TXK*PK;
MODEL INCOMETAX /PRF_X.X, PRF_Y.Y, PRF_TK.TK,PRF_TL.TL,
PRF_W.W, MKT_X.PX, MKT_Y.PY, MKT_L.PL,
MKT_TK.PKS, MKT_TL.PLS,
MKT_K.PK, MKT_W.PW, I_CONS.CONS /;
X.L $=1$;

Y.L	$=1 ;$
TK.L	$=1 ;$
TL.L	$=1 ;$
W.L	$=1 ;$
PL.L	$=1 ;$
PX.L	$=1 ;$
PY.L	$=1 ;$
PLS.L	$=1.5 ;$
PKS.L	$=1.5 ;$
PK.L	$=1 ;$
PW.FX	$=1 ;$
CONS.L	$=340 ;$
TXL	$=0.5 ;$
TXK	$=0.5 ;$

INCOMETAX.ITERLIM = 0; SOLVE INCOMETAX USING MCP;

* Lets do some counter-factual with taxes shifted to the
* factor which is in fixed supply:

INCOMETAX.ITERLIM = 1000;
SOLVE INCOMETAX USING MCP;

LOOP (S,

```
TXL = 0.60 - 0.10*ORD(S);
TXK = 0.40 + 0.10*ORD(S);
```

SOLVE INCOMETAX USING MCP;

```
WELFARE(S) = W.L;
```

$\operatorname{LABSUP}(S)=T L . L ;$
$\operatorname{INCOME}(S)=((P X . L / 1.5) * X . L+(P Y . L / 1.5) * Y . L)$
/((PX.L/1.5)**0.5*(PY.L/1.5)**0.5)/2;
CAPTAX(S) = TXK;
TAXREV(S) $=(T X L * P L . L * T L . L * 80+T X K * P K . L * T K . L * 80) ~$
/((PX.L/1.5)**0.5*(PY.L/1.5)**0.5);
);
DISPLAY WELFARE, LABSUP, INCOME, CAPTAX, TAXREV;

```
PARAMETER
    RESULTS(S, *);
```

RESULTS(S, "WELFARE") = WELFARE(S);
RESULTS(S, "LABSUP") = LABSUP(S);
RESULTS(S, "TAXREV") = TAXREV(S);

DISPLAY RESULTS;

TXL = 0;
TXK = 0;
SOLVE INCOMETAX USING MCP;
6.2b Equal yield tax reform

We set up a model in which we can do differential tax policy analysis holding the level of government revenue constant

This model introduces a fourth (and final) class of variables (in addition to activity levels, commodity prices and income levels).

The new entity is called an "auxiliary variable". In this model, we use an auxiliary variable to endogenously alter the tax rate in order to maintain an equal yield.

In the present case, we will hold the labor tax rate exogenous, but change its value, solving for the value of the endogenous capital tax that yields the same value of revenue as the original tax.

TXK now become a variable, not a parameter.

In the initial statements specifying the variables and the equations the model, we declare an extra variable TXK and an extra equation A_TXK ("A" for auxiliary)

Here is the constraint equation as it appears in the model

A_TXK.. TXL*PL*TL*80 + TXK*PK*TK*80

$$
=E=80 *((P X * * 0.5 * P Y * * 0.5) ;
$$

The left-hand side is tax revenue from the two taxes, one an exogenous parameter (TXL) and the other an endogenous variable (TXK).

Each term is (tax rate) * (factor price) * (activity level for factor supply) * (the reference quantity supplied at an activity level equal to one).

The right-hand side of the constraint specifies the target revenue.
The modeler has to think carefully about what is meant by "constant" revenue: that is, constant in terms of what?

Assume that the government wants the taxes to yield an amount equal to the cost of purchasing a "composite" unit of (sub) utility from X and Y. The cost is given from the consumer's expenditure function as

80 * ((PX**0.5 * PY**0.5);
Of course, the government is not actually buying anything in this simple model, it is just redistributing the revenue back to the consumer.

But the modeler must specify what the revenue target is in real terms.

In our case, the initial value of $\mathrm{TXK}=0.50$, so we set this along with the values of PLS and PKS which are equal to 1.5 initially, along with the initial value of the parameter TXL (the latter is a parameter and so does not use the '.L' syntax).
PX.L $=1 . ;$
PY.L $=1 . ;$
PLS.L $=1.5 ;$
PKS.L $=1.5 ;$
TXL $=0.50 ;$
TXK.L $=0.50 ;$

After the replication check, we loop over values of TXL, and each solve statement finds the new value of TXK as one variable in the new general-equilibrium solution.

In each iteration, we store the values of key variables so that they can be presented together at the end of the listing file.

We include the difference between the effects of the reform on real commodity consumption (REALCONS) and true welfare (WELFARE), the latter accounting the value of leisure.

Note from the results in the present case, that measuring only the change in real commodity consumption significantly overstates the true welfare gain of the tax reform (which is tiny) because of the fall in leisure (increase in labor supply).

\$TITLE M6-2b.GMS: 2x2 Economy with income tax, endogenous tax rate

\$ONTEXT

```
Illustrates equal yield tax reform to introduce auxiliary
    variable and constraint equaltion
Distorionary labor tax is lowered and capital tax raised
    endogenously (TXK is now a VARIABLE) to hold revenue constant
```

 Production Sectors Consumers
 | Markets | X | Y | W | TL | TK | CONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P X$ | 120 | | -120 | | | |
| PY | | 120 | -120 | | | |
| PW | | | 340 | | | -340 |
| PLS | -48 | - 72 | | 120 | | |
| PKS | - 72 | -48 | | | 120 | |
| PL | | | -100 | -80 | | 180 |
| PK | | | | | -80 | 80 |
| TAX | | | | -40 | -40 | 80 |

\$OFFTEXT

SETS S /1*6/;

PARAMETERS

TXL	Labor income tax rate
WELFARE(S)	Welfare
LABSUP(S)	Labor supply
INCOME(S)	Money income = consumption of X and Y
CAPTAX(S)	Endogenous capital tax for equal yield
TAXREV(S)	Tax revenue in terms of purchasing power;

POSITIVE VARIABLES

X	Activity level for sector X
Y	Activity level for sector Y
TL	Supply activity for L
TK	Supply activity for K
W	Activity level for sector W
PX	Price index for commodity X
PY	Price index for commodity Y
PL	Price index for primary factor L net of tax
PK	Price index for primary factor K net of tax
PLS	Price index for primary factor L gross of tax
PKS	Price index for primary factor K gross of tax
PW	Price index for welfare (expenditure function)
CONS	Income definition for CONS
TXK	Endogenous capital tax from equal yield constr

EQUATIONS

```
PRF_X Zero profit for sector X
PRF_Y Zero profit for sector Y
PRF_TL Zero profit for sector TL
PRF_TK Zero profit for sector TK
PRF_W Zero profit for sector W
MKT_X Supply-demand balance for commodity X
MKT_TK Supply-demand balance for commodity TK
MKT_TL Supply-demand balance for commodity TL
MKT_Y Supply-demand balance for commodity Y
MKT_L Supply-demand balance for primary factor L
MKT_K Supply-demand balance for primary factor K
MKT_W Supply-demand balance for aggregate demand
I_CONS Income definition for CONS
A_TXK Auxiliary eq associated with equal yield constraint;
```

Zero profit conditions:
PRF_X.. 80*PLS**0.4 * PKS**0.6 =G= 120*PX;
PRF_Y.. 80*PLS**0.6 * PKS**0.4 =G= 120*PY;
PRF_TL.. 80*PL*(1+TXL) =G= 80*PLS;

```
PRF_TK.. 80*PK* (1+TXK) =G= 80*PKS;
PRF_W.. 340*(PX)**(12/34) * (PY)**(12/34) * PL**(10/34)
    =G= 340 * PW ;
```

*

Market clearing conditions:
MKT_X.. 120*X =G= 340*W*PW * (12/34)/PX;
MKT_Y.. 120*Y =G= 340*W*PW * (12/34)/PY;
MKT_W.. 340*W =G= CONS / PW;
MKT_L.. $180=G=80 * T L+340 * W^{*}(10 / 34) *(P W / P L) ;$
MKT_K.. 80 =G= 80*TK;
MKT_TL.. 80*TL =G= 48*X*PX/PLS + 72*Y*PY/PLS;
MKT_TK.. 80*TK =G= 72*Y*PY/PKS + 48*X*PX/PKS;

* Income constraints:
I_CONS.. CONS =E= 180*PL + 80*PK + 80*TL*TXL*PL + 80*TK*TXK*PK;

```
A_TXK.. TXL*PL*TL*80 + TXK*PK*TK*80
    =E= 80 *(PX**0.5 * PY**0.5);
```

MODEL ALGEBRAIC /PRF_X.X, PRF_Y.Y, PRF_TK.TK,PRF_TL.TL,
PRF_W.W, MKT_X.PX, MKT_Y.PY, MKT_L.PL,
MKT_TK.PKS, MKT_TL.PLS,
MKT_K.PK, MKT_W.PW, I_CONS.CONS, A_TXK.TXK /;
X.L $=1$;
Y.L =1;
TK.L =1;
TL.L =1;
W.L =1;
PL.L =1;
PX.L =1;
PY.L =1;
PLS.L =1.5;
PKS.L =1.5;
PK.L =1;
PW.FX =1;
CONS.L =340;
TXL $=0.5$;
TXK.L =0.5;

```
ALGEBRAIC.ITERLIM = 0;
SOLVE ALGEBRAIC USING MCP;
```

```
* Lets do some counter-factual with taxes shifted to the
```

* Lets do some counter-factual with taxes shifted to the
* factor which is in fixed supply:

```
* factor which is in fixed supply:
```

ALGEBRAIC.ITERLIM = 1000;
SOLVE ALGEBRAIC USING MCP;
LOOP (S,
TXL $=0.60$ - 0.10*ORD(S);
SOLVE ALGEBRAIC USING MCP;
WELFARE(S) = W.L;
LABSUP(S) = TL.L;
INCOME(S) = (PX.L*X.L + PY.L*Y.L)
/(PX.L**0.5*PY.L**0.5)/2;
CAPTAX(S) = TXK.L;
$\operatorname{TAXREV}(S)=(T X L * P L . L * T L . L * 80+T X K . L * P K . L * T K . L * 80)$
/(PX.L**0.5*PY.L**0.5));
DISPLAY WELFARE, LABSUP, INCOME, CAPTAX, TAXREV;

TXL = 0;
TXK.FX = 0;

SOLVE ALGEBRAIC USING MCP;
6.3 Public consumption goods

The assumption of lump-sum redistribution is a convenient trick which simplifies tax policy analysis.

In practice, governments often use money to purchase things which private markets cannot provide..

In this model, we first explicitly introduce government as an agent or "consumer" (GOVT).

The tax revenue collected in the economy is assigned to the government.

The government spends this on purchasing a good called G (price PG), produced from capital and labor like goods X and Y.

Sectors	Production					Consumers		
Markets	X	Y	G	W1	W2	C0NS1	CONS2	GOVT
PX	100			-50	-50			
PY		100		-50	-50			
PG			50					-50
PL	-80	-80	-40			100	100	
TAX I	-20	-20	-10					50
PW1				125		-125		
PW2 \|					125		-125	
PG1				-25		25		
PG2 \|					-25		25	

The government is the only agent demanding PG in the model and taxes are the government's only source of income.

Each consumer receives the full benefit of the public good: a public good is non-rivaled.

And a consumer cannot be charged for the good, nor can a consumer sell it to other consumers: a public good is nonexcludable

The way that we co this in GAMS is to have the government buy the good from tax revenue, then the full amount of the good is transferred or endowed to each consumer.

This is done via an auxiliary variable and a constraint equation.

$$
\text { LGP }=\mathrm{E}=\mathrm{G} \text {; }
$$

where G is production of the good and LGP is each consumer's endowment of the good, viewed as exogenous.

Since each consumer's endowment of the good is fixed and equal,, consumers with different incomes or preferences will in general have different demand prices for the good.

These are often referred to as "willingness to pay".
PG1 and PG2 are the demand prices or willingness to pay by consumers 1 and 2 respectively.

These are in effect separate or "personalized" goods: one consumer cannot sell his/her good to the other consumer.

We can capture the non-excludability and non-rivaled properties by thinking of two separate "markets": each consumer "demands" the good they are endowment with which, because the quantity is fixed, allows us to solve for each consumer's demand price separately.

Here are the relevant, key equations, where again, LGP is viewed as exogenously by each consumer.

MKT_G1.. 50*LGP =G= 50 * W1 * PW1*0.5/PG1;
MKT_G2.. 50*LGP =G= 50 * W2 * PW2*0.5/PG2;
I_CONS1.. CONS1 =E= 50*PL + 50*PK + 50*LGP*PG1;

I_CONS2.. CONS2 =E= 50*PL + 50*PK + 50*LGP*PG2;

Optimality: the optimal provision of a public good occurs when the marginal cost of providing the good equals the sum of the consumers' willingness to pay (since equal consumer gets the full benefit of an additional unit: non-rivaled).

In the data, we have assumed that the valuations of the public goods at a price PG1 $=$ PG2 $=0.5$ and th marginal cost of provision is $P G=1$.

Thus the initial data represent an optimal initial provision of the public good. PG = PG1 + PG2.

Note that this is an assumption. We do not actually observed the demand prices (willingness to pay) in any real data.
(A big task in environmental economies is to estimate willingness to pay for various goods; e.g., parks and open space.)
\$TITLE M6-3: Economy with two households and a public good

\$ONTEXT

How do we model a public good that is non-excludable and non-rivaled?

	Production Sectors					Consumers		
Markets\|	X	Y	G	W1	W2	CONS1	CONS2	GOVT
$P X$	100			-50	-50			
PY		100		-50	-50			
PG			50					-50
PL	-80	-80	-40			100	100	
TAX	-20	-20	-10					50
PW1 \|				125		-125		
PW2					125		-125	
PG1 \|				-25		25		
PG2					-25		25	

\$0FFTEXT

PARAMETER
TAX Value-added tax rate;

```
NONNEGATIVE VARIABLES
    X Activity level for sector X
    Y Activity level for sector Y
    W1 Activity level for sector W1
    W2 Activity level for sector W2
    G Activity level for government sector
    PX Price index for commodity X
    PY Price index for commodity Y
    PL Price index for primary factor L
    PW1 Price index for welfare 1(expenditure function)
    PW2 Price index for welfare 2(expenditure function)
    PG1 Private valuation of the public good (consumer 1)
    PG2 Private valuation of the public good (consumer 2)
    PG Price of (cost of producing) the public good
    GOVT Budget restriction for government
    CONS1 Income definition for CONS1
    CONS2 Income definition for CONS2
    LGP Endowment of public good received by each consumer;
EQUATIONS
    PRF_X Zero profit for sector X
    PRF_Y Zero profit for sector Y
    PRF_W1 Zero profit for sector W1
```

```
PRF_W2 Zero profit for sector W2
PRF_G Zero profit in government sector
MKT_X Supply-demand balance for commodity X
MKT_Y Supply-demand balance for commodity Y
MKT_L Supply-demand balance for primary factor L
MKT_W1 Supply-demand balance for consumer 1
MKT_W2 Supply-demand balance for consumer 2
MKT_G1 Private valuation of the public good (consumer 1)
MKT_G2 Private valuation of the public good (consumer 2)
MKT_G Supply-demand balance for commodity G
I_G Budget restriction for government
I_CONS1 Income definition for CONS1
I_CONS2 Income definition for CONS2
A_LGP Auxiliary for government provision;
    Zero profit conditions:
PRF_X.. 80*PL * (1+TAX) =G= 100*PX;
PRF_Y.. 80*PL * (1+TAX) =G= 100*PY;
PRF_G.. 40*PL * (1+TAX) =G= 50*PG;
```

```
PRF_W1.. 125*PX**(50/125) * PY**(50/125) * (PG1/0.5)**(25/125)
    =G= 125*PW1;
PRF_W2.. 125*PX**(50/125) * PY**(50/125) * (PG2/0.5)**(25/125)
    =G= 125*PW2;
*
Market clearing conditions:
MKT_X.. 100*X =G= 50*W1*PW1/PX + 50*W2*PW2/PX ;
MKT_Y.. 100*Y =G= 50*W1*PW1/PY + 50*W2*PW2/PY;
MKT_L.. 200 =G= (80*X + 80*Y + 40*G);
MKT_W1.. 125*W1 =G= CONS1 / PW1;
MKT_W2.. 125*W2 =G= CONS2 / PW2;
MKT_G.. 50*G =G= GOVT/ PG;
MKT_G1.. 50*LGP =G= 25 * W1 * PW1/PG1;
MKT_G2.. 50*LGP =G= 25 * W2 * PW2/PG2;
* Income constraints:
```

```
I_G.. GOVT =G= PL*(80*X + 80*Y + 40*G )*TAX;
I_CONS1.. CONS1 =E= 100*PL + 50*LGP*PG1;
I_CONS2.. CONS2 =E= 100*PL + 50*LGP*PG2;
```

* Auxiliary constraints:
A_LGP.. LGP =E= G;
MODEL PUBGOOD /PRF_X.X, PRF_Y.Y, PRF_W1.W1, PRF_W2.W2, PRF_G.G,
MKT_X.PX, MKT_Y.PY, MKT_L.PL,
MKT_W1.PW1, MKT_W2.PW2,
MKT_G.PG, MKT_G1.PG1, MKT_G2.PG2,
I_G.GOVT, I_CONS1.CONS1, I_CONS2.CONS2,
A_LGP.LGP /;
X.L $=1$;
Y.L =1;
W1.L =1;
W2.L =1;
G.L =1;
PL.FX =1;
PX.L =1;
PY.L =1;

```
PG.L =1;
PW1.L =1;
PW2.L =1;
PG1.L =0.5;
PG2.L =0.5;
CONS1.L =125;
CONS2.L =125;
GOVT.L =50;
LGP.L =1;
TAX =0.25;
PUBGOOD.ITERLIM = 0;
SOLVE PUBGOOD USING MCP;
PUBGOOD.ITERLIM = 2000;
SOLVE PUBGOOD USING MCP;
```

```
* The following counterfactuals check that the original
```

* The following counterfactuals check that the original
* benchmark is indeed an optimum by
* benchmark is indeed an optimum by
* raising/lowering the tax
* raising/lowering the tax
TAX = 0.10;

```

SOLVE PUBGOOD USING MCP;

TAX \(=0.40 ;\)
SOLVE PUBGOOD USING MCP;

\subsection*{6.4 Optimal provision using a Samuelson rule}

This model is exactly the same as the previous one, except that the tax used to finance the public good is endogenous.

Instead of TAX being a parameter, it is now an auxiliary variable. Its value is set by the constraint equation:
PG =E= PG1 + PG2;

Since each consumer gets the full amount of the public good (the good is "non-rivaled"), the marginal benefit of another unit of the good is the sum of the demand prices for all the consumers.

Efficiency is achieved when this sum of benefits is equal to the marginal cost of producing another unit.

Note that the auxiliary variable itself need not appear in the constraint equation associated with it. The solution algorithm will adjust TAX in order to satisfy this condition.

Caveat: the Samuelson rule is valid only if the tax needed to pay for the public good can be raised in a non-distortionary way.

If distortionary taxes must be used, the sum of marginal benefits must be weighed against the marginal cost of production plus the marginal burden of taxation.

When we run this model, we will get back a value of \(T A X=0.25\), because we calibrated the preferences assuming that the initial data was optimal.

As a counterfactual experiment, we change one consumer's valuation of the public good, by changing the share parameters in consumer 1's utility function.

Share parameters in the benchmark are set and declared as:
```

PARAMETERS
SHX1, SHY1, SHG1 shares of X Y and G in 1's utility
SHX2, SHY2, SHG2 shares of X Y and G in 2's utility;
SHG1 = 0.2;
SHX1 = 0.5 - SHG1/2;
SHY1 = 0.5 - SHG1/2;
SHG2 = 0.2;
SHX2 = 0.5 - SHG2/2;
SHY2 = 0.5 - SHG2/2;

```

\section*{Counterfactual experiment sets:}
```

SHG1 = 0.3;
SHX1 = 0.5 - SHG1/2;
SHY1 = 0.5 - SHG1/2;

```

Note that, although the higher tax is efficient according to the Samuelson rule, it nevertheless results in a redistribution of welfare from the low valuation consumer to the high valuation consumer.
\$TITLE M6-4.GMS: Economy with two consumers, public good, * optimal provision with an endogenous tax rate, Samuelson rule

\section*{\$ONTEXT}
Samuelson rule for optimal provision, \(P G=P G 1+P G 2\)
introduces an auxiliary variable and constraint equation
Here is the tax rate is a VARIABLE, set optimally
Generalizes M6-3.gms: two consumers with different preferences
```

Production Sectors Consumers

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Markets| & \(X\) & \(Y\) & G & W1 & W2 & CONS1 & CONS2 & GOVT \\
\hline PX | & 100 & & & -50 & -50 & & & \\
\hline PY & & 100 & & -50 & -50 & & & \\
\hline PG & & & 50 & & & & & -50 \\
\hline \(P L\) & -80 & -80 & -40 & & & 100 & 100 & \\
\hline TAX & -20 & -20 & -10 & & & & & 50 \\
\hline PW1 | & & & & 125 & & -125 & & \\
\hline PW2 & & & & & 125 & & -125 & \\
\hline PG1 | & & & & -25 & & 25 & & \\
\hline PG2 | & & & & & -25 & & 25 & \\
\hline
\end{tabular}

\section*{\$0FFTEXT}

\section*{PARAMETERS}
```

SHX1, SHY1, SHG1 shares of X Y and G in consumer 1's utility
SHX2, SHY2, SHG2 shares of X Y and G in consumer 2's utility;

```
```

SHG1 = 0.2;
SHX1 = 0.5 - SHG1/2;
SHY1 = 0.5 - SHG1/2;
SHG2 = 0.2;
SHX2 = 0.5 - SHG2/2;
SHY2 = 0.5 - SHG2/2;

```

\section*{POSITIVE VARIABLES}

X
\(Y\) Activity level for sector \(Y\),
W1 Activity level for sector W1,
W2 Activity level for sector W2,
G Activity level for government sector,
PX Price index for commodity \(X\),
PY Price index for commodity Y,
PL Price index for primary factor L,
PW1 Price index for welfare 1(expenditure function),
PW2 Price index for welfare 2(expenditure function),
PG1 Private valuation of the public good (consumer 1),
PG2 Private valuation of the public good (consumer 2),

PG Price (marginal cost) of the public good
```

GOVT Budget restriction for government,
CONS1 Income definition for CONS1,
CONS2 Income definition for CONS2,
LGP Level of government provision
TAX Uniform value-added tax rate;

```

\section*{EQUATIONS}
```

PRF_X Zero profit for sector X
PRF_Y Zero profit for sector Y
PRF_W1 Zero profit for sector W1
PRF_W2 Zero profit for sector W2
PRF_G Zero profit in government sector
MKT_X Supply-demand balance for commodity X
MKT_Y Supply-demand balance for commodity Y
MKT_L Supply-demand balance for primary factor L
MKT_W1 Supply-demand balance for consumer 1
MKT_W2 Supply-demand balance for consumer 2
MKT_G1 Private valuation of the public good (consumer 1)
MKT_G2 Private valuation of the public good (consumer 2)
MKT_G Supply-demand balance for commodity G
I_G Budget restriction for government

```

I_CONS1 Income definition for CONS1
I_CONS2 Income definition for CONS2

A_LGP Auxiliary for government provision
A_TAX Auxiliary for government provision;

\section*{Zero profit conditions:}
```

PRF_X.. 80*PL * (1+TAX) =G= 100*PX;
PRF_Y.. 80*PL * (1+TAX) =G= 100*PY;
PRF_W1.. 125*PX**(SHX1) * PY**(SHY1) * (PG1/0.5)**(SHG1)
=E= 125*PW1;
PRF_W2.. 125*PX**(SHX2) * PY**(SHY2) * (PG2/0.5)**(SHG2)
=E= 125*PW2;
PRF_G.. 40*PL * (1+TAX) =G= 50*PG;
Market clearing conditions:
MKT_X.. 100*X =G= 125*SHX1*W1*PW1/PX + 125*SHX2*W2*PW2/PX ;
MKT_Y.. 100*Y =G= 125*SHY1*W1*PW1/PY + 125*SHY2*W2*PW2/PY;

```
```

MKT_W1.. 125*W1 =G= CONS1/PW1;
MKT_W2.. 125*W2 =G= CONS2/PW2;
MKT_L.. 200 =G=(80*X + 80*Y + 40*G);
MKT_G1.. 50 * LGP =G= 125*SHG1 * W1 * PW1/PG1;
MKT_G2.. 50 * LGP =G= 125*SHG2 * W2 * PW2/PG2;
MKT_G.. 50*G =G= GOVT/ PG;

* Income constraints:
I_G.. GOVT =G= PL*(80*X + 80*Y + 40*G)*TAX;
I_CONS1.. CONS1 =E= 100*PL + 50*LGP*PG1;
I_CONS2.. CONS2 =E= 100*PL + 50*LGP*PG2;
Auxiliary constraints:
A_LGP.. LGP =E= G;
A_TAX.. PG =E= PG1 + PG2;

```
```

MODEL PUBGOOD2 /PRF_X.X, PRF_Y.Y, PRF_W1.W1, PRF_W2.W2,
PRF_G.G,
MKT_X.PX, MKT_Y.PY, MKT_L.PL,
MKT_W1.PW1, MKT_W2.PW2,
MKT_G.PG, MKT_G1.PG1, MKT_G2.PG2,
I_G.GOVT, I_CONS1.CONS1, I_CONS2.CONS2,
A_LGP.LGP, A_TAX.TAX /;
X.L =1;
Y.L =1;
W1.L =1;
W2.L =1;
G.L =1;
PL.FX =1;
PX.L =1;
PY.L =1;
PG.L =1;
PW1.L =1;
PW2.L =1;
PG1.L =0.5;
PG2.L =0.5;
CONS1.L =125;

```
```

CONS2.L =125;
GOVT.L =50;
LGP.L =1;
TAX.L =0.25;
PUBGOOD2.ITERLIM = 0;
SOLVE PUBGOOD2 USING MCP;
PUBGOOD2.ITERLIM = 2000;
SOLVE PUBGOOD2 USING MCP;

* Change consumer 1's preferences, higher preference for the
* public good, which now has a Cobb-Douglas share of 0.3
SHG1 = 0.3;
SHX1 = 0.5 - SHG1/2;
SHY1 = 0.5 - SHG1/2;
*PUBGOOD2.ITERLIM = 0;
SOLVE PUBGOOD2 USING MCP;

```
TAX.FX = 0.25;
SOLVE PUBGOOD2 USING MCP;
6.5 Public intermediate (infrastructure) good with optimal provision

Suppose that output in the \(X\) sector is given by
\[
X=\alpha L
\]
where \(L\) is a private input and \(\alpha\) is a parameter which is increasing in the level of a government-provided infra-structure good.

Individual firms view \(\alpha\) as exogenous.

Producing one unit of \(X\) then requires \(1 / \alpha\) units of \(L\). The unit cost function for \(X\) is then \(p_{/} / \alpha=p_{x}\).

The public good \(G\) is produced from labor only (the only factor of production), and is financed by an equal tax on all goods (including the public good).

The equation for alpha is given by
\[
\text { ALPHA =E= } 1+\text { INFPROD*G; }
\]
where INFPROD is a parameter giving productivity of \(G\) in \(X\).

The marginal product of \(G\) in producing \(X\) ( \(L\) held constant), is then
\[
\frac{\partial X}{\partial G}=I N F P R O D * L \quad \text { where } \mathrm{L} \text { is the labor used in } \mathrm{X}
\]

Referring back to the production function, we can replace \(L\) with
\[
\frac{\partial X}{\partial G}=\operatorname{INFPROD} *(X / \alpha)
\]

Now multiply this by PX to get the value of the marginal product of \(G\) in \(X\). This should then be set equal to the price (marginal cost) of a unit of G, PG.
\[
p_{g}=p_{x} \operatorname{INFPROD} *(X / \alpha)
\]

This will be an auxiliary equation that sets a non-distortionary (endogenous) income tax rate TX to its optimal value.
\$TITLE M6-5.GMS: Public intermediate good with optimal provision * technique for modeling infrastructure for example

\section*{\$ONTEXT}

Production Sectors
Consumers
\begin{tabular}{l|r|rccc} 
Markets & \(X\) & \(Y\) & \(G\) & W1 & CONS1
\end{tabular} GOVT

\section*{\$OFFTEXT}

\section*{PARAMETERS}

SHX, SHY shares of \(X\) and \(Y\) in consumer's utility
INFPROD productivity parameter of the public good in \(X\) output WELF;

SHX = 0.5;
SHY = 0.5;
```

INFPROD = 0;

```

\section*{POSITIVE VARIABLES}
\(X \quad\) Activity level for sector \(X\)
\(Y\) Activity level for sector \(Y\)
W Activity level for sector W
G Activity level for government sector
PX Price index for commodity \(X\)
PY Price index for commodity \(Y\)
PG Private valuation of the public good
PL Price index for primary factor L
PW Price index for welfare 1(expenditure function)
GOVT Budget restriction for government
CONS Income definition for CONS
TAX Uniform value-added tax rate
ALPHA Public intermediary good multiplier on productivity;

\section*{EQUATIONS}

PRF_X Zero profit for sector X
PRF_Y Zero profit for sector Y
PRF_W Zero profit for sector W1
PRF_G Zero profit in government sector
\begin{tabular}{ll} 
MKT_X & Supply-demand balance for commodity X \\
MKT_Y & Supply-demand balance for commodity Y \\
MKT_G & Supply-demand balance for commodity G \\
MKT_L & Supply-demand balance for primary factor L \\
MKT_W & Supply-demand balance for consumer 1 \\
I_G & Budget restriction for government \\
I_CONS & Income definition for coNS \\
A_TAX & Auxiliary for government provision \\
INFRA & Auxiliary for public intermediate good calculation;
\end{tabular}
    Zero profit conditions:
PRF_X.. 80*PL * (1+TAX)/ALPHA =G= 100*PX;
PRF_Y.. 80*PL * (1+TAX) =G= 100*PY;
PRF_W .. 200*PX**(SHX) * PY**(SHY) =E= 200*PW;
PRF_G.. \(40^{*}\) PL * (1+TAX) \(=G=100 * P G ;\)
    Market clearing conditions:
MKT_X.. 100*X =G= 200*SHX*W*PW/PX;
```

MKT_Y.. 100*Y =G= 200*SHY*W*PW/PY;
MKT_G.. 100*G =G= GOVT/ PG;
MKT_L.. 200 =G= (80*X/ALPHA + 80*Y + 40*G);
MKT_W.. 200*W =G= CONS/PW;

* Income constraints:
I_G.. GOVT =G= PL*(80*X/ALPHA + 80*Y + 40*G)*TAX;
I_CONS.. CONS =E= 200*PL;
* Auxiliary constraints:
A_TAX.. PG =E= PX*INFPROD*(X/ALPHA);
INFRA.. ALPHA =E= 1 + INFPROD*G;

```
MODEL PUBINT /PRF_X.X, PRF_Y.Y, PRF_W.W, PRF_G.G,
    MKT_X.PX, MKT_Y.PY, MKT_L.PL, MKT_W.PW, MKT_G.PG,
    I_G.GOVT, I_CONS.CONS,
    A_TAX.TAX, INFRA.ALPHA /;
\begin{tabular}{ll} 
X.L & \(=1 ;\) \\
Y.L & \(=1 ;\) \\
W.L & \(=1 ;\) \\
G.L & \(=1 ;\) \\
PL.FX & \(=1 ;\) \\
PX.L & \(=1 ;\) \\
PY.L & \(=1 ;\) \\
PG.L & \(=0.5 ;\) \\
PW.L & \(=1 ;\) \\
CONS.L & \(=200 ;\) \\
GOVT.L & \(=50 ;\) \\
ALPHA.L & \(=1 ;\) \\
TAX.L & \(=.25 ;\)
\end{tabular}

PUBINT. ITERLIM = 0;
SOLVE PUBINT USING MCP;
* with INFPROD = 0 initially, the optimal tax should be zero

PUBINT.ITERLIM = 2000;
SOLVE PUBINT USING MCP;
* now set INFPROD = 2, optimal tax and provision should be positive

INFPROD = 2;
TAX.L = 0.25; G.L = 1;

SOLVE PUBINT USING MCP;
WELF = W.L*100;
DISPLAY WELF;
```

* now let's check by "brute force" whether the answer is right
* loop over fixed values of TAX
SETS I /I1*I15/;
PARAMETERS
WELFARE(I)
TAXRATE(I);

```
LOOP (I,
TAX.FX \(=0.29+0.01 * 0 R D(I) ;\)
SOLVE PUBINT USING MCP;
WELFARE(I) = 100*W.L;
TAXRATE(I) = TAX.L;
);
DISPLAY TAXRATE, WELFARE;
6.6a Pollution from production affects utility

This model is: two goods, one factor, one consumer
Pollution is generated by the production of \(X\), pollution reduces utility
Pollution is modeled as a reduction in the endowment of CLEAN AIR Initial endowment of clear air is 200, with 100 reduced by X pollution and 100 entering utility. PCA = price of clean air.
\begin{tabular}{cccc|c} 
& \multicolumn{2}{c}{ Production Sectors } & Consumers \\
Markets & X & Y & W & CONS
\end{tabular}

As in the case of a public good, this public "bad" must be modeled as non-rivaled and non-excludable. (Non-rivaled is trivial here since there is only one consumer.)

The utility function gives \(1 / 3\) equal weights to \(\mathrm{X}, \mathrm{Y}\), and CA . Expenditure function is given by:

PRF_W.. 200*(PX**(1/3) * PY**(1/3) * PCA**(1/3)) =G= 200*PW;

Shepard's lemma then gives a demand for clean air: as in the public good case, consumer's cannot actually chose;

Rather, this gives a demand price for the given amount of clean air. This "willingness to pay" is part of the solution to the model.

The supply of clean air is given as the endowment 200, minus that which is "stolen" by pollution from the production of \(X\) : 100*POL.

MKT_CA.. 200-100*POL =G= 100 * \(W\) * PW / PCA;

Consumer income will be defined as inclusive of the value of clean air, similar to our treatment of leisure. TX is a pollution tax on \(X\).

I_CONS.. CONS =E= 200*PL + (200-100*POL)*PCA + TX*100*X*PL;

Pollution is proportional to the production of \(X\). POLINT is a parameter for pollution intensity of \(X\) produciton.

PPOL.. 100*POL =G= POLINT*100*X;
\$TITLE: M6-6a.GMS: Modelling pollution as reducing the endowment * of an environment public good

\section*{\$ONTEXT}

This model is a closed economy: two goods and one factor, one consumer Pollution is generated by the production of \(X\), pollution reduces utility Pollution is modeled as a reduction in the endowment of CLEAN AIR Initial endowment of clear air is 200, with 100 reduced by \(X\) pollution and 100 entering utility.
\begin{tabular}{|c|c|c|c|c|}
\hline Markets & \multicolumn{3}{|r|}{Production Sectors} & Consumers CONS \\
\hline PX & 100 & & -100 & \\
\hline PY & & 100 & -100 & \\
\hline PW & & & 300 & -300 \\
\hline PL & -100 & -100 & & 200 \\
\hline PCA & & & -100 & (200 \\
\hline
\end{tabular}

\section*{\$0FFTEXT}

\section*{PARAMETERS}

TX ad-valorem tax rate for \(X\) sector inputs POLINT polution intensity multiplier;
```

TX = 0;
POLINT = 1;

```

\section*{POSITIVE VARIABLES}
\begin{tabular}{ll}
\(X\) & activity level for \(X\) production \\
\(Y\) & activity level for \(Y\) production \\
W & activity level for the "production" of welfare from \(X Y\) \\
& price of good \(X\) \\
PX & price of good \(Y\) \\
PY & price of clean air \\
PW & price of a unit of welfare (real consumer-price index) \\
PL & price of labor \\
CONS & income of the representative consumer \\
POL & pollution;
\end{tabular}

\section*{EQUATIONS}
```

PRF_X zero profit for sector X
PRF_Y zero profit for sector Y
PRF_W zero profit for sector W (Hicksian welfare index)
MKT_X supply-demand balance for commodity X

```
\begin{tabular}{|c|c|}
\hline MKT_Y & supply-demand balance for commodity Y \\
\hline MKT_CA & market for clean air (determines shadow value PCA) \\
\hline MKT_L & supply-demand balance for primary factor L \\
\hline MKT_W & supply-demand balance for aggregate demand \\
\hline I_CONS & income definition for CONS \\
\hline PPOL & pollution caused by production - consumption of X; \\
\hline * & Zero profit inequalities \\
\hline PRF_X. & 100*PL*(1+TX) =G= 100*PX; \\
\hline PRF_Y.. & 100*PL =G= 100*PY; \\
\hline PRF_W. . & 300*(PX**(1/3) * PY**(1/3) * PCA**(1/3)) =G= 300*PW; \\
\hline * & Market clearance inequalities \\
\hline MKT_X. & 100*X \(\quad=\mathrm{G}=100\) * W * PW / PX; \\
\hline MKT_Y.. & 100*Y \(=\mathrm{G}=100\) * W * PW / PY; \\
\hline MKT_CA. . & 200-100*POL =G= 100 * W * PW / PCA; \\
\hline MKT_W. . & 300*W =E= CONS / PW; \\
\hline
\end{tabular}
```

MKT_L.. 200 =G= 100*X + 100*Y;

* Income balance equations (don't forget tax revenue)
I_CONS.. CONS =E= 200*PL + (200-100*POL)*PCA + TX*100*X*PL;
PPOL.. 100*POL =G= POLINT*100*X;
MODEL POLLUTE /PRF_X.X, PRF_Y.Y, PRF_W.W,
MKT_X.PX, MKT_Y.PY, MKT_CA.PCA, MKT_L.PL,
MKT_W.PW,I_CONS.CONS, PPOL.POL /;
*

Chose a numeraire: real consumer price index
PW.FX = 1;

* Set initial values of variables:
X.L=1; Y.L=1; W.L=1;
PX.L=1; PY.L=1; PL.L=1; POL.L = 1; PCA.L = 1;
CONS.L=300;
POLLUTE.ITERLIM = 0;
SOLVE POLLUTE USING MCP;

```
```

POLLUTE.ITERLIM = 1000;

```
SOLVE POLLUTE USING MCP;
* counterfactual 1: 50\% tax
TX = 0.5;
SOLVE POLLUTE USING MCP;
TX = 0.75;
SOLVE POLLUTE USING MCP;
6.6b Uses MPEC to solve for the optimal pollution tax

Now we make TX a variable rather than a tax. Second, we introduce another (unbounded) variable WELFARE (to be optimized). WELFARE just equals W from M6-6a.

This is an MPEC (optimization problem subject to equilibrium constraints). There is no need for an added equation for the added variable TX. The solver will find its optimal value.

The model has one unmatched equation (WELFARE), with the constraint set the same general-equilibrium model of M6-6a.

TX is not matched to an equation.
\$TITLE: M6-6b.GMS: Pollution modelled as an MPEC to solve for optimal TX

\section*{\$ONTEXT}

Follows from M6-5a: two goods and one factor, one consumer
Pollution is generated by the production of \(X\), pollution reduces utility Pollution is modeled as a reduction in the endowment of CLEAN AIR Initial endowment of clear air is 200, with 100 reduced by \(X\) pollution and 100 entering utility.
Solves for the welfare maximizing level of the pollution tax
\begin{tabular}{|c|c|c|c|c|c|}
\hline Markets & \multicolumn{3}{|r|}{Production Sectors} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Consumers } \\
& \text { CONS }
\end{aligned}
\]} \\
\hline PX & 100 & & -100 & & \\
\hline PY & & 100 & -100 & & \\
\hline PW & & & 300 & -300 & \\
\hline PL & -100 & -100 & & 200 & \\
\hline PCA & & & -100 & (200 - & 100) \\
\hline
\end{tabular}

\section*{\$0FFTEXT}

\section*{PARAMETERS}

POLINT polution intensity multiplier;
```

POLINT = 1;

```

VARIABLES
WELFARE welfare
TX pollution tax on X;

\section*{POSITIVE VARIABLES}
\begin{tabular}{ll}
\(X\) & activity level for \(X\) production \\
\(Y\) & activity level for \(Y\) production \\
W & activity level for the "production" of welfare from X Y \\
PX & price of good \(X\) \\
PY & price of good \(Y\) \\
PCA & price of clean air \\
PW & price of a unit of welfare (real consumer-price index) \\
PL & price of labor \\
CONS & income of the representative consumer \\
POL & pollution;
\end{tabular}

\section*{EQUATIONS}
\begin{tabular}{ll} 
OBJ & Objective function: maximize welfare \\
PRF_X & zero profit for sector \(X\) \\
PRF_Y & zero profit for sector \(Y\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline PRF_W & zero profit for sector W (Hicksian welfare index) \\
\hline MKT_X & supply-demand balance for commodity \(X\) \\
\hline MKT_Y & supply-demand balance for commodity Y \\
\hline MKT_CA & market for clean air (determines shadow value PCA) \\
\hline MKT_L & supply-demand balance for primary factor L \\
\hline MKT_W & supply-demand balance for aggregate demand \\
\hline I_CONS & income definition for CONS \\
\hline PPOL & pollution caused by production - consumption of X; \\
\hline * & Zero profit inequalities \\
\hline OBJ. . & WELFARE \(=\mathrm{E}=\mathrm{W}\); \\
\hline PRF_X. & \(100 * P L *(1+T X)=G=100 * P X ;\) \\
\hline PRF_Y.. & \(100 * P L=G=100 * P Y\); \\
\hline PRF_W. . & 200*(PX**(1/3) * PY**(1/3) * PCA**(1/3)) =G= 200*PW; \\
\hline * & Market clearance inequalities \\
\hline MKT_X.. & 100*X \(\quad=G=100\) * W * PW / PX; \\
\hline MKT_Y. . & 100*Y Y (G= 100 * W * PW / PY; \\
\hline
\end{tabular}
```

MKT_CA.. 200-100*POL =G= 100 * W * PW / PCA;
MKT_W.. 300*W =E= CONS / PW;
MKT_L.. 200 =G= 100*X + 100*Y;

* Income balance equations (don't forget tax revenue)
I_CONS.. CONS =E= 200*PL + (200-100*POL)*PCA + TX*100*X*PL;
PPOL.. 100*POL =G= POLINT*100*X;
MODEL POLLUTE / OBJ, PRF_X.X, PRF_Y.Y, PRF_W.W,
MKT_X.PX, MKT_Y.PY, MKT_CA.PCA, MKT_L.PL,
MKT_W.PW,I_CONS.CONS, PPOL.POL /;
*

Chose a numeraire: real consumer price index
PW.FX = 1;
Set initial values of variables:
X.L=1; Y.L=1; W.L=1;
PX.L=1; PY.L=1; PL.L=1; POL.L = 1; PCA.L = 1;

```
```

CONS.L=300; WELFARE.L = 1;

```
OPTION MPEC = nlpec;
POLLUTE.ITERLIM = 0;
SOLVE POLLUTE USING MPEC MAXIMIZING WELFARE;
TX.L \(=0.3 ;\)
WELFARE.L \(=1.2 ;\)
POLLUTE.ITERLIM = 1000;
SOLVE POLLUTE USING MPEC MAXMIZING WELFARE;
* make pollution worse
POLINT = 1.5;
SOLVE POLLUTE USING MPEC MAXMIZING WELFARE;
6.6c Optimal tax set by a Pigouvian tax formula

Another way to find the optimal tax is to use a Pigouvian tax rule, which states that the price of the polluting good must equal its full cost.

In our case, this is the price of the privates inputs (labor) needed to produce one unit of \(X\) plus the marginal damages of pollution from one more unit of \(X\).

So now we add an equation (and drop WELFARE) which is matched to the variable TX. This is given by:

ATX. .
PX =E= PL + PCA*POLINT;
or noting that \(P X=P L *(1+T X)\), the equation can be written as:
ATX. .
TX =E= PCA*POLINT/PL;
```

\$TITLE M6-6c.GMS: Pollution tax set optimally via a

* "first-order condition"
* TX is set by an equation equation the price of X to it's full cost:
* PX = PL + PCA

```

\section*{\$ONTEXT}

This model is a closed economy: two goods and one factor, one consumer Pollution is generated by the production of \(X\), pollution reduces utility Pollution is modeled as a reduction in the endowment of CLEAN AIR Initial endowment of clear air is 200, with 100 reduced by \(X\) pollution and 100 entering utility.

\$OFFTEXT

\section*{PARAMETERS}
\begin{tabular}{ll} 
POLINT & polution intensity multiplier \\
WELOPT & welfare under the optimal tax \\
TAXOPT & value of the optimal tax; \\
POLINT = 1; &
\end{tabular}

\section*{NONNEGATIVE VARIABLES}
\begin{tabular}{ll}
\(X\) & activity level for \(X\) production \\
\(Y\) & activity level for \(Y\) production \\
W & activity level for the "production" of welfare from X Y \\
PX & price of good \(X\) \\
PY & price of good \(Y\) \\
PCA & price of clean air \\
PW & price of a unit of welfare (real consumer-price index) \\
PL & price of labor \\
CONS & income of the representative consumer \\
POL & pollution \\
TX & pollution tax;
\end{tabular}

\section*{EQUATIONS}
\begin{tabular}{|c|c|}
\hline PRF_X & zero profit for sector \(X\) \\
\hline PRF_Y & zero profit for sector Y \\
\hline PRF_W & zero profit for sector W (Hicksian welfare index) \\
\hline MKT_X & supply-demand balance for commodity \(X\) \\
\hline MKT_Y & supply-demand balance for commodity Y \\
\hline MKT_CA & market for clean air (determines shadow value PCA) \\
\hline MKT_L & supply-demand balance for primary factor L \\
\hline MKT_W & supply-demand balance for aggregate demand \\
\hline I_CONS & income definition for cons \\
\hline PPOL & pollution caused by production - consumption of \(X\) \\
\hline ATX & sets pollution tax optimally; \\
\hline * & Zero profit inequalities \\
\hline PRF_X. & 100*PL* \((1+T X)=\mathrm{G}=100 * P X\); \\
\hline PRF_Y. . & 100*PL =G= 100*PY; \\
\hline PRF_W. . & 200*(PX**(1/3) * PY**(1/3) * PCA**(1/3)) =G= 200*PW; \\
\hline
\end{tabular}
```

MKT_X..	$100^{*} \mathrm{X}$	$=\mathrm{G}=100$ * $\mathrm{W} * \mathrm{PW} / \mathrm{PX} ;$
MKT_Y..	$100^{*} \mathrm{Y}$	$=\mathrm{G}=100$ * $\mathrm{W} * \mathrm{PW} / \mathrm{PY} ;$

MKT_CA.. 200-100*POL =G= 100 * W * PW / PCA;
MKT_W.. 300*W =E= CONS / PW;
MKT_L.. 200 =G= 100*X + 100*Y;

* Income balance equations (don't forget tax revenue)
I_CONS.. CONS =E= 200*PL + (200-100*POL)*PCA + TX*100*X*PL;
PPOL.. 100*POL =G= POLINT*100*X;
ATX.. PX =E= PL + PCA*POLINT;
* or since PX = PL*(1 + TX), equivalently
*ATX. .
TX =E= PCA*POLINT / PL;
MODEL ALGEBRAIC /PRF_X.X, PRF_Y.Y, PRF_W.W,
MKT_X.PX, MKT_Y.PY, MKT_CA.PCA, MKT_L.PL,
MKT_W.PW,I_CONS.CONS, PPOL.POL, ATX.TX /;

```

PW.FX = 1;
*
Set initial values of variables:
X.L=1; Y.L=1; W.L=1; PX.L=1; PY.L=1; PL.L=1; POL.L = 1; PCA.L = 1; CONS.L=300;

ALGEBRAIC.ITERLIM \(=0\);
SOLVE ALGEBRAIC USING MCP;
ALGEBRAIC. ITERLIM = 1000;
SOLVE ALGEBRAIC USING MCP;
WELOPT = 100*W.L;
TAXOPT = TX.L;
DISPLAY WELOPT, TAXOPT;
POLINT = 1.5;
SOLVE ALGEBRAIC USING MCP;
WELOPT = 100*W.L;
TAXOPT = TX.L;
DISPLAY WELOPT, TAXOPT;
6.7 Two households with different preferences, endowments

This model is an adaptation of model M3-7:

Here we introduce a social welfare function and find taxes that maximize social welfare.

This is modeled as an MPEC. Model M3-7 is the constraint set on the MPEC.

The model allows for variable (and endogenous) weights on each household type in social welfare. This model can be viewed as a basic starting point for thinking about political economy.

Two household: differ in preferences and in endowments
Household A: well endowed with labor, preference for labor-int good \(Y\)
Household B: well endowed with capital, preference for capital-int good \(X\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Markets|} & \multirow[b]{2}{*}{X} & \multicolumn{3}{|l|}{Production Sectors} & \multicolumn{2}{|r|}{Consumers} \\
\hline & & Y & WA & WB & A & B \\
\hline PX & 100 & & -40 & -60 & & \\
\hline PY & & 100 & -60 & -40 & & \\
\hline PWA & & & 100 & & -100 & \\
\hline PWB & & & & 100 & & -100 \\
\hline PL & -25 & -75 & & & 90 & 10 \\
\hline PK | & -75 & -25 & & & 10 & 90 \\
\hline
\end{tabular}

Allows for tax to be redistributed unevenly between households, and for a lump-sum redistribution for comparison purposes.

The tax redistribution or sharing rule can also be interpreted as the relative number of households in each group, with all households getting an equal share of tax receipts.

\section*{Parameters}
```

WEIGHTA weight of consumer A in social welfare
WEIGHTB weight of consumer B in social welfare

```

Variables
\begin{tabular}{ll} 
SHA & share of tax redistributed to consumer A \\
SHB & share of tax redistributed to consumer B \\
LS & lump sum redistribution to consumer A;
\end{tabular}

Add a variable, social welfare WS, and an equation giving the social welfare function.

OBJ.. WS =E= (WA**WEIGHTA) * (WB**WEIGHTB);

The income-balance constraints for the two consumer types reflect their redistributive shares of total tax revenue, and/or lump-sum redistribution.

I_CONSA.. CONSA =E= 90*PL + 10*PK + SHA*TAX*100*X*PX/(1+TAX) + LS;

I_CONSB.. CONSB =E= 10*PL + 90*PK + SHB*TAX*100*X*PX/(1+TAX) - LS;

To make the problem interesting, we (initially) have a single tax instrument, and production/consumption tax on X .

Thus the only available tax is distortionary and creates an aggregate welfare loss. There is a cost to redistributing income.

Note that the optimal tax might be a subsidy, so the variable TAX is specified as a free (unbounded) variable.

The model is calibrated so that, if the welfare weights on the two consumer groups are equal, the optimal tax is zero.

Now give a higher weight to households A: WEIGHTA \(=0.7\).
Perhaps 70\% of all households by count (and votes) are type A

A higher weight on households \(A\), will mean a positive tax for two reinforcing reasons:

Good \(X\) is capital intensive And

Households B are capital abundant And

Households \(B\) have a high preference for \(X\) in consumption

Thus a positive tax hurts households B and helps households \(A\).

Experiment 1: maximize welfare holding shares SHA and SHB fixed at 0.5 , and fixing LS at 0 : no lump-sum transfers possible.

Experiment 2: maximize welfare allowing for endogenous shares

Experiment 3: maximize welfare allowing for lump-sum transfers

Experiment 4: reverse the weights on the two household types
\$TITLE: M6-7.GMS: two households with different preferences, endowments

\section*{\$ONTEXT}
```

 adaptation of model M3-7:
 distortionary tax can be used for redistribution
 modeled as an MPEC: find the optimal tax maximizing social welfare
 two add-ons
 (1)allows the redistributive shares of tax revenue to be endogenous
 (2) allows an optimal lump-sum redistribution for comparison
    ```
Two household: differ in preferences and in endowments
Household A: well endowed with labor,
    preference for labor-int good \(Y\)
Household B: well endowed with capital,
    preference for capital-int good \(X\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Production Sectors} & \multicolumn{2}{|r|}{Consumers} \\
\hline Markets & \(X\) & \(Y\) & WA & WB & A & \(B\) \\
\hline \(P X\) & 100 & & -40 & -60 & & \\
\hline PY & & 100 & -60 & -40 & & \\
\hline PWA & & & 100 & & -100 & \\
\hline PWB & & & & 100 & & -100 \\
\hline PL & -25 & - 75 & & & 90 & 10 \\
\hline PK & - 75 & -25 & & & 10 & 90 \\
\hline
\end{tabular}
```

The tax redistribution or sharing rule can also be interpreted
as the relative number of households in each group, with all
households getting an equal share of tax receipts

```

\section*{\$0FFTEXT}

\section*{PARAMETERS}
WEIGHTA weight of consumer \(A\) in social welfare
WEIGHTB weight of consumer \(B\) in social welfere;

WEIGHTA \(=0.5\);
WEIGHTB \(=0.5\);

\section*{VARIABLES}
\begin{tabular}{ll} 
WS & social welfare \\
TAX & endogenous tax rate on \(X\) \\
LS & lump sum redistibution;
\end{tabular}

NONNEGATIVE VARIABLES
\begin{tabular}{ll}
\(X\) & Activity level for sector \(X\), \\
\(Y\) & Activity level for sector \(Y\), \\
WA & Activity level for weflare for consumer A \\
WB & Activity level for welfare for consumer B \\
PX & Price index for commodity \(X\),
\end{tabular}
\begin{tabular}{ll} 
PY & Price index for commodity \(Y\), \\
PK & Price index for primary factor K, \\
PL & Price index for primary factor L, \\
PWA & Price index for welfare A(expenditure function), \\
PWB & Price index for welfare B(expenditure function), \\
CONSA & Income definition for CONSA, \\
CONSB & Income definition for CONSB \\
SHA & share of tax redistributed to consumer A \\
SHB & share of tax redistributed to consumer B;
\end{tabular}

\section*{EQUATIONS}
```

OBJ Social welfare function
PRF_X Zero profit for sector X
PRF_Y Zero profit for sector Y
PRF_WA Zero profit for sector WA (Hicksian welfare index)
PRF_WB Zero profit for sector WB (Hicksian welfare index)
MKT_X Supply-demand balance for commodity X
MKT_Y Supply-demand balance for commodity Y
MKT_L Supply-demand balance for primary factor L
MKT_K Supply-demand balance for primary factor K
MKT_WA Supply-demand balance for aggregate demand consumer A
MKT_WB Supply-demand balance for aggregate demand consumer B

```

I_CONSA Income definition for CONSA
I_CONSB Income definition for CONSB
ADDUP Sum of the redistributive shares equals 1;

Objective function (social weflare function) to be maxmized
OBJ.. WS =E= (WA**WEIGHTA) * (WB**WEIGHTB);
Zero profit conditions:

```

MKT_WB.. 100 * WB =E= CONSB / PWB;
MKT_L.. 90 + 10 =E= 25*X*(PX/(1+TAX))/PL + 75*Y*PY/PL;
MKT_K..
10 + 90 =E= 75*X*(PX/(1+TAX))/PK + 25*Y*PY/PK;

* Income constraints:
I_CONSA.. CONSA =E= 90*PL + 10*PK + SHA*TAX*100*X*PX/(1+TAX) + LS;
I_CONSB.. CONSB =E= 10*PL + 90*PK + SHB*TAX*100*X*PX/(1+TAX) - LS;
ADDUP.. SHA + SHB =E= 1;
*MODEL MPEC /ALL/;
OPTION MPEC = nlpec;
MODEL MPEC /OBJ, PRF_X.X, PRF_Y.Y, PRF_WA.WA, PRF_WB.WB,
MKT_X.PX, MKT_Y.PY, MKT_L.PL,
MKT_K.PK, MKT_WA.PWA, MKT_WB.PWB,
I_CONSA.CONSA, I_CONSB.CONSB, ADDUP /;
* Check the benchmark:
WS.L =1;
X.L =1;

```
```

Y.L =1;
WA.L =1;
WB.L =1;
PL.L =1;
PX.L =1;
PY.L =1;
PK.L =1;
PWB.L =1;
PWA.L =1;
CONSA.L =100;
CONSB.L =100;
TAX.L =0.;
SHA.L =0.5;
SHB.L =0.5;

```
PWA.FX = 1;
SOLVE MPEC USING MPEC MAXIMIZING WS;
```

* now allow weights in social welfare to differ
* e.g., 70% of all households/voters are type A

```
```

WEIGHTA = 0.7;

```
WEIGHTB \(=0.3\);
```

* first, fix shares at 0.5, hold LS $=0$
SHA.FX = 0.5;
SHB.FX = 0.5;
LS.FX $=0$;

```
SOLVE MPEC USING MPEC MAXIMIZING WS;
* now free up the redistributive weights
SHA.UP = +INF;
SHB.UP = +INF;
SHA.LO = 0;
SHB.LO = 0;

SOLVE MPEC USING MPEC MAXIMIZING WS;
* now allow lump-sum transfers
LS.UP = +INF;
LS.LO = -INF;
SOLVE MPEC USING MPEC MAXIMIZING WS;
* now switch the weights to consumer \(B\)

WEIGHTA \(=0.3\);
WEIGHTB \(=0.7\);
SOLVE MPEC USING MPEC MAXIMIZING WS;```

