
Computational Economics (2020) 55:925–955
https://doi.org/10.1007/s10614-019-09921-y

Solving Stochastic Dynamic Programming Problems:
A Mixed Complementarity Approach

Wonjun Chang1 ·Michael C. Ferris4,5 · Youngdae Kim2 ·
Thomas F. Rutherford3,5

Accepted: 24 September 2019 / Published online: 4 October 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We present a mixed complementarity problem (MCP) formulation of continuous
state dynamic programming problems (DP-MCP). We write the solution to projec-
tion methods in value function iteration (VFI) as a joint set of optimality conditions
that characterize maximization of the Bellman equation; and approximation of the
value function. The MCP approach replaces the iterative component of projection
based VFI with a one-shot solution to a square system of complementary conditions.
We provide three numerical examples to illustrate our approach.

Keywords Dynamic Programming · Computable general equilibrium ·
Complementarity · Computational methods

1 Introduction

Dynamicprogramming (DP) is a standardoptimizationprinciple used to solvedynamic
optimization problems. Due to the simple yet flexible feature of the Bellman equa-

This research was partially supported by the Electric Power Research Institute (EPRI). We would like to
acknowledge the input of Richard Howitt for helpful comments and discussion. Rutherford thanks Wouter
den Haan for his lectures and homework assignments in the Macroeconomics Summer School at the
London School of Economics (2014).

B Wonjun Chang
wchang@crai.com

1 CRA International, Washington, D.C., USA

2 Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA

3 Department of Agricultural and Applied Economics, University of Wisconsin-Madison,
Madison, WI, USA

4 Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA

5 Optimization Group, Wisconsin Institutes for Discovery, Madison, WI, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10614-019-09921-y&domain=pdf
http://orcid.org/0000-0003-1919-7571

926 W. Chang et al.

tion, DP serves as a tractable solution method for dynamic optimization problems,
especially when uncertainty is involved.

Over the past two decades, advances in numerical integration and approximation
methods have made the application of DP to numerical economic modeling more
accessible. Models are now less limited by algebraic tractability and can make more
room for essential details of the economic system (Judd 1998; Rust 1996; Manuelli
and Sargent 2009; Wright and Nocedal 1999; Miranda and Fackler 2004). Aided by
the increasing use of DP in large scale economic models, numerical solution methods
that can deal with a great number of continuous and discrete state variables have
also been researched (Judd et al. 2014; Maliar and Maliar 2014, 2015; Powell 2011).
As a result, there exists a multitude of DP based algorithms, each designed to achieve
solution accuracy and computation efficiency for various types of numerical problems.

One field that benefits from these methodological advancements in particular, is
climate economics. Stochastic recursive formulations of climate integrated assessment
models (IAMs) are important tools in assessing policy implications of the uncertainty
that surround climate change. However, given the complexity and size of even the
simplest climate IAMs, the application of DP would be severely restricted without the
use of advanced numerical methods.

A popular and effective solution method used for stochastic IAMs is value function
iteration (VFI), in which projection methods are employed to approximate the value
function (Cai et al. 2012; Lemoine and Traeger 2014, 2016; Rudik 2016; Traeger
2014a, b; Cai and Judd 2015). Prevalence of VFI as a solution method in climate,
environmental and resource economics has called for surveys on frontier numerical
methods that further strengthen VFI as an effective and viable solution method in
these fields (Lemoine and Rudik 2017; Cai 2018; Cai and Judd 2014). In general,
projection based VFI methods are widely considered workhorse solution methods for
discrete-time DP problems.

This paper presents a mixed complementarity problem (MCP)1 formulation of pro-
jection based VFI for discrete time, continuous state DP problems (DP-MCP). To
illustrate our approach, we use the collocation method illustrated in Judd (1998) and
Miranda and Fackler (2004). VFI collocation (henceforth simply referred to as VFI)
is a standard fixed-point solution method in DP, used widely for its monotonic conver-
gence properties and straightforward implementation. Despite its stability however,
conventional VFI has several drawbacks that limit application to complex models.

The first is that convergence is slow, which is particularly the case in economic
growth models with a discount factor close to unity. A second drawback is the curse of
dimensionality. In VFI, the cost of computation increases exponentially in the number
of state variables, rendering the solution method intractable for large scale applica-
tions.2 We also point to the iterative component itself as a drawback. Iteration between
function approximation and value maximization can make VFI implementation time
consuming, which is made worse by aforementioned weaknesses.

1 Generalization of nonlinear complementarity problems.
2 We note that the level of the curse of dimensionality depends on the methods employed in VFI. As we
demonstrate later in this paper, the use of non-product approximation methods such as complete Chebyshev
polynomials, or the use of Smolyak sparse grids (Smolyak 1963), can mitigate the curse of dimensionality.
See section on the curse of dimensionality in Cai (2018) for further discussion.

123

Solving Stochastic Dynamic Programming Problems: a Mixed… 927

Reformulating conventional VFI as a complementarity problem removes the iter-
ative aspect of the algorithm. The MCP of VFI is written as a square system of
equilibrium constraints that encompass:

a. Bellman’s optimality conditions with respect to a vector of control variables, a,
given a vector of coefficients in value function approximant, α;

b. optimality conditions for function approximation with respect to the vector of
coefficients in value function approximant ,α, given a vector of control variables,
a;

for which the solution is a pair (a, α) that characterizes an equilibrium between the two
alternating objectives ofVFI.And although theMCP formulation per se does not attend
to the curse of dimensionality, the use of computational methods such as Smolyak
sparse grids (Smolyak 1963; Judd et al. 2014; Maliar and Maliar 2014) and Nonlinear
Certainty Equivalent Approximation (Cai et al. 2017) extends the application of our
method to large scale DP problems.

The practicality of our solution method however comes at a cost. Formulating the
complementary conditions ofVFI involves the tedious task of hand-coding both primal
and dual equations, which can double the scope for coding error. We hence introduce
a framework for implementation–the use of the ExtendedMathematical Programming
(EMP) framework in GAMS (Kim and Ferris 2019; Ferris et al. 2009) mitigates such
errors by automating the formulation of the MCP. The EMP framework also enables
the modeler to flexibly adapt the solve procedure to the properties of the DP problem,
further enhancing computational performance.

Our interest in the use of complementarity methods for solving dynamic program-
ming problems was inspired by the work of Dubé et al. (2012) and Su and Judd (2012).
Their work addresses structural estimation of discrete choice problems in a math pro-
gramming with equilibrium constraints (MPEC) framework. Equilibrium conditions
are used to obtain solutions to the Bellman equation in a one-shot fashion. Our objec-
tive is to demonstrate how their use of equilibrium conditions can be extended to
discrete-time, continuous-choice problems, particularly to ones that feature occasion-
ally binding constraints in the form of complementary conditions.

The paper lays out three sample applications: two standard nonlinear problems of
stochastic economic growth; and a complementarity problem, with which we demon-
strate the extension of DP-MCP to DP problems that are more naturally formulated
as an MCP. To keep things simple, we deal with infinite-horizon problems and use
Chebyshev collocation as the default projection method. For further simplicity, we
minimize the sum of square residuals to compute the coefficient vector of the function
approximant.

The paper is organized as follows. Section 2 provides an introduction to comple-
mentarity problems and presents the DP-MCP formulation of VFI. Section 3 provides
an overview of the EMP framework and provides the EMP representation of DP-MCP.
In Sects. 4 and 5, we provide simple numerical examples of stochastic optimal growth
models, including a 4-sector model based on Global Trade Analysis Project (GTAP)
data. In Sect. 6, we extend our method to a complementarity problem–a DP problem
already formulated as an MCP. Section 7 concludes.

123

928 W. Chang et al.

2 DP-MCP: Dynamic Programming as aMixed Complementarity
Problem

We write the Bellman equation in a deterministic infinite-horizon setting as follows:

V (x) = max
a∈A

[C(x, a) + βV (x ′)] s.t . x ′ = h(x, a) (1)

where x is the vector of state variables, A is the action space and C , the immediate
contribution function. β ∈ (0, 1) is the discount factor. The sets of assumptions that
guarantee existence of a unique solution, V ∗(x), are found in Judd (1998) and Stokey
and Lucas Jr (1989). We know that, if the set of feasible next period states (x ′ ∈ X)
is compact; and C(·) is real-valued, continuous and bounded—a set of assumptions
commonly imposed for numerical feasibility—the solution to the above fixed point
problem, V ∗(x), exists and is unique.

For m collocation points, VFI outputs a single solution set comprised of a set of
coefficients, {αl}ml=1, and a set of optimal control values, {ai }mi=1, that solve theBellman
equation.3 Each iteration of VFI involves solving two optimization problems—
approximation of the value function; and maximization of the Bellman equation. Our
approach shows that the solution to the converged function iteration process can be
expressed as the unique equilibrium that results from solving the two problems simul-
taneously.

Mathematically, we look for the solution pair, (a∗, α∗), that satisfies:

a∗ ∈ argmax
a∈A

[
C(x, a) + βV (x ′;α∗)

]
subject to x ′ = h(x, a),

α∗ ∈ argmin
α

[
∑

i

([
C(xi , a

∗
i) + βV (h(xi , a

∗);α)
] − V (xi ;α)

)2
]

.

where a∗ = {a∗
i }mi=1, α∗ = {α∗

l }ml=1

DP-MCP formulates this equilibrium as an MCP—a square system of equations
and inequalities that characterizes the Karush–Kuhn–Tucker (KKT) optimality con-
ditions of two nonlinear optimization problems. Formally, an MCP is defined by two
components—a function F : Rn → R

n and a rectangular set B = {z ∈ R
n | li ≤ zi ≤

ui , for i = 1, . . . , n}; where li , ui ∈ R ∪ {−∞,∞}, such that z ∈ B is a solution to
the MCP(B, F) if one of the following holds for all i = 1, . . . , n:

0 ≤ Fi (z) and zi = li ,

0 = Fi (z) and li ≤ zi ≤ ui ,

0 ≥ Fi (z) and zi = ui .

(2)

In shorthand, we write F(z) ⊥ l ≤ z ≤ u to imply (2), also known as comple-
mentary conditions. When z is unbounded, or bounded only on one-side, we can also
explicitly include a constraint on F ; e.g. 0 ≤ F(z) ⊥ z ≥ l.

3 Refer to “Appendix” for an overview of the VFI algorithm.

123

Solving Stochastic Dynamic Programming Problems: a Mixed… 929

Given a single optimization problem:

min
x≥0

f (x) subject to g(x) ≥ 0, (3)

its KKT conditions are:

0 ≤ ∇ f (x) − ∇g(x)λ ⊥ x ≥ 0;
0 ≤ g(x) ⊥ λ ≥ 0.

(4)

This is equivalent to the MCP(B, F) with B = {(x, λ) | x ≥ 0, λ ≥ 0} and
F(x, λ) = (∇ f (x) − ∇g(x)λ, g(x))T . When there are N optimization problems that
make up the equilibrium, we can formulate the MCP by concatenating each problem’s
KKT conditions. Solving this MCP is therefore equivalent to finding a point satisfying
the N KKT conditions simultaneously.

The use of complementarity is not foreign to economic modeling applications. The
field of general equilibrium modeling has long used complementarity problems to
express the relationships between price and excess demand, profit and activity levels
(Mathiesen 1985; Rasmussen and Rutherford 2004; Lau et al. 2002; Rutherford 1995).
In general, complementarity relationships are used to characterize the optimality con-
ditions of constrained nonlinear optimization problems.

WenowcastVFI in complementarity form.The systemof inequalities and equations
that make up the MCP is as follows:

−
(

∂C(xi , ai)

∂ai
+ β

∂V (xi ′ ;α)

∂ai

)
+ ∂h

∂ai
pi ⊥ al ≤ ai ≤ au, ∀i ∈ {1, . . . ,m}

Ui = C(xi , ai) + βV (x ′
i ;α) ⊥ Ui free, ∀i ∈ {1, . . . ,m}

∂
∑

i

(
Ui − V (xi ;α)

)2

∂αl
= 0 ⊥ αl free, ∀l ∈ {1, . . . ,m}

xi
′ = h(xi , ai) ⊥ pi free, ∀i ∈ {1, . . . ,m}

(5)
where we define α = [α1, . . . , αm] to be a vector of m coefficients used in the value
function approximation.

Once setup as anMCP, awell-established complementarity solver such as PATHcan
be applied to VFI to obtain a numerical solution to the Bellman equation (Ferris and
Munson 2000; Dirkse and Ferris 1995). To guarantee that DP-MCP obtains a global
solution, we note that the immediate contribution function, C(·), must be strictly
concave, while also satisfying the set of assumptions that guarantee existence of a
unique value function.

3 The ExtendedMathematical Programming (EMP) Framework

The practicality of our approach however comes with a caveat: the complementarity
formulation requires hand-coding of both the primal and dual equations that character-

123

930 W. Chang et al.

ize the equilibrium. This doubles the scope for coding error when using an algebraic
modeling language such as GAMS.We could avoid such errors by using the Extended
Mathematical Programming (EMP) framework for equilibrium problems in GAMS .

The EMP framework is a useful resource in solving non-standard models that
require reformulation into accessiblemodels of establishedmathprogramming classes.
In DP-MCP, the EMP framework is used to formulate the corresponding MCP given
a high-level characterization of the equilibrium problem as an input. After writing
each optimization problem in primal form, the modeler need only specify the names
of variables and equations involved in each problem. This information is to be speci-
fied by the modeler in the EMP input file (labeled empfile), which the framework
automatically reads to generate the MCP formulation of VFI.

To demonstrate, we use the deterministic infinite horizonDP previously stated in (7)
[MCP formulation stated in (5)]. The corresponding EMP input is written as follows:

max U(i) s.t. c(i), xprime(i), a(i), h(i), def_U(i),

def_C(i), def_xprime(i), def_h(i)

min SUMSQR_RSDL s.t. alpha(l), def_SUMSQR_RSDL

The first and second lines state the Bellman maximization problem, and the third
line states the function approximation problem. To specify a problem, the modeler
need only state the objective term that is maximized or minimized (max U(i) in the
maximization problem), the list of primal variables (c(i),...,h(i)), and lastly
the primal equations (def_U(i),...,def_h(i)).

Another important feature of EMP is that post-formulation, the framework can
easily conform the DP implementation to the properties of the resulting MCP (Kim
and Ferris 2018). For instance, if the MCP formulation lacks global convergence
properties, a poor initial point can degrade the solve performance significantly—DP-
MCP is unable to exploit the locally superlinear (quadratic) convergence rate originally
intendedvia the complementarity formulation. In this case, implementing conventional
VFI initiallymaybe advantageous, as it can guarantee global convergence regardless of
the starting point. In theEMP framework, themodeler can combine both approaches by
first running conventionalVFI for small number of iterations and switching to theMCP
formulation, once a good starting point for the MCP is obtained. Running n iterations
of conventional VFI before solving DP-MCP for instance, can be implemented with
one line of code added to the solver option file:

$echo major_iteration_limit n >> solver.opt

This “hybrid approach”, can help achieve global convergence in DP-MCP, while
preserving its computational performance.

Further note that the Bellman maximization step can be approached in different
ways. This step can be solved separately for each grid point; it can also be solved as
an aggregate by maximizing the sum of utility over all grid points. When this step is
computationally costly, dividing up the independent subproblems of the DP problem
and solving the set of problems in parallel can further enhance computational perfor-
mance (Cai et al. 2015). The EMP framework can easily adapt the DP implementation

123

Solving Stochastic Dynamic Programming Problems: a Mixed… 931

to include this “parallel dynamic programming”, which is implemented in the same
way as the hybrid approach:

$echo parallel_jacobi yes >> solver.opt

As such, the compactness and adaptability of the EMP framework in implementing
DP-MCP is showcased in the GAMS code “Appendix” of this paper.

4 Stochastic Neoclassical GrowthModel

As a numerical exercise, we solve a variant of the well-known stochastic neoclassical
growth model. In this model, a social planner picks a consumption trajectory {ct }∞t=0
to solve:

max
ct ,kt+1

E

{ ∞∑

t=0

(1 − β)β t u(ct)

}

given utility function and resource constraint:

u(ct) = log ct , kt+1 = zt k
φ
t − ct + (1 − δ)kt ,

kt+1 − (1 − δ)kt ≥ 0, ct ≥ 0.

We use model parameters from Aruoba et al. (2006), where β (= 0.9896) is the
discount factor, φ (= 0.4), the capital value share and δ (= 0.0196), the capital depre-
ciation rate. Labor is fixed and the stochastic productivity shock zt evolves according
to a 5-point Markov chain:

zt ∈ Z = {4.9327, 4.9664, 5, 5.0336, 5.0673}

The transition matrixQ is obtained using Tauchen (1986)’s method of discretizing
AR(1) processes:

Q =

⎛

⎜⎜⎜⎜
⎝

0.9727 0.0273 0 0 0
0.0041 0.9806 0.0153 0 0

0 0.0082 0.9837 0.0082 0
0 0 0.0153 0.9806 0.0041
0 0 0 0.0273 0.9727

⎞

⎟⎟⎟⎟
⎠

We solve the model with both traditional VFI and DP-MCP to compare solution
outputs. In both approaches, we use complete Chebyshev polynomials to estimate
the value function. This particular family of orthogonal polynomials is used due to
favorable convergence properties and accuracy in function interpolation. Further dis-
cussion on the application of orthogonal polynomials and Chebyshev interpolation
can be found in Judd (1998).

123

932 W. Chang et al.

DP-MCP Formulation

We use a fourth degree Chebyshev polynomial interpolation with five collocation
points for each state variable—capital and productivity levels. The Bellman equation
for the single sector stochastic growth model is written as follows:

V (k, z) = max
c

(1 − β)u(c) + βE
{
V (k′, z′)|z}

s.t . u(c) = log c,

k′ = zkφ − c + (1 − δ)k,

k′ − (1 − δ)k ≥ 0,

c ≥ 0,

where k′ and z′ are respectively the capital and productivity levels in the next period.
With collocation indices (i, j) for each state variable, we discretize the expected value
operator using the probabilities in transition matrix, q j, j ′ ∈ Q; and approximate the
value function with a complete Chebyshev polynomial; i.e.

V (k′, z′ ;α) =
∑

0≤s+t≤4

αs,t T
c
s (k′)T c

t (z′);

where T c
k : [−1, 1] → [−1, 1] is the kth order Chebyshev basis function. α represents

the vector of coefficients in the approximant. We can thus rewrite the above problem.
For all (i, j);

V (ki , z j) = max
ci, j

(1 − β)u(ci, j) + β
∑

j ′
q j, j ′

∑

0≤s+t≤4

αs,t T
c
s (k′

i, j)T
c
t (z′j)

s.t . u(ci, j) = log ci, j ,

k′
i, j = z j k

φ
i − ci, j + (1 − δ)ki ,

k′
i, j − (1 − δ)ki ≥ 0,

ci, j ≥ 0,

The corresponding DP-MCP is written as:

(1 − β)
∂u(ci, j)

∂ci, j
≤ pi, j ⊥ ci, j ≥ 0, ∀(i, j)

β
∂
∑

j ′ q j, j ′
∑

0≤s+t≤4 αs,t T c
s (ki, j

′)T c
t (z j

′)
∂ki, j ′

≤ pi, j + Pi, j ⊥ ki, j
′ ≥ 0, ∀(i, j)

Ui, j = (1 − β)u(ci, j) + β
∑

j ′
q j, j ′

∑

0≤s+t≤4

αs,t T
c
s (ki, j

′)T c
t (z j

′) ⊥ Ui, j free, ∀(i, j)

∂
∑

i, j
(
Ui, j − ∑

0≤s+t≤4 αs,t T c
s (ki)T

c
t (z j)

)2

∂αs,t
= 0 ⊥ αs,t free, ∀(s, t)

123

Solving Stochastic Dynamic Programming Problems: a Mixed… 933

Fig. 1 ComparingBellman equation residuals forVFI andDP-MCP logarithmic scale is used to plot residual
values

ki, j
′ = z j k

φ
i − ci, j + (1 − δ)ki ⊥ pi, j free, ∀(i, j)

(1 − δ)ki − ki, j
′ ≤ 0 ⊥ Pi, j ≤ 0, ∀(i, j). (6)

We perform accuracy checks to a. demonstrate that the one-shot approach replicates
results from a fully convergedVFI procedure; and b. to evaluate the quality of the value
function approximation.

We first note that, although the standard Chebyshev collocation method is used
to demonstrate implementation of DP-MCP, the choice of projection method and
the details that ensure solution accuracy are not tied to our approach. Our method
reformulates projection based VFI as an MCP, taking the VFI setup (state variable
bounds, polynomial choice, etc.) as given. It is therefore intuitive to measure how
close the MCP approximant is to the approximant output by a fully converged VFI
process.

For this reason we report Bellman equation residuals as a measure of algorithm
performance. The residual is a measure of the distance between the value function
approximant and the functional fixed point of the Bellman equation at the collocation
nodes. The residual that results from DP-MCP is compared to that from sufficiently
convergedVFI. See Fig. 1 for results. ForVFI, we take themaximumabsolute Bellman
residual over the collocation nodes and plot the values across iteration count. For DP-
MCP, we compute the same metric once, post-implementation of DP-MCP.

Figure 1 shows that the value function approximant fromVFI gradually approaches
that ofDP-MCP.With a tolerance level set to 1E-6 using the infinity normover absolute
deviations of value function coefficients, the VFI process concludes in 796 iterations.
However, to replicate the Bellman equation residual value output by DP-MCP (1.28E-
5), VFI would have to run at least 1095 iterations, at which point the Bellman residuals
for the two approaches become equal.

123

934 W. Chang et al.

Table 1 log10 of normalized errors relative to true consumption value

Error metric n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

log10 ‖E‖1 − 3.682 − 4.499 − 5.245 − 5.666 − 5.968 − 6.034

log10 ‖E‖∞ − 3.461 − 4.31 − 5.011 − 5.299 − 5.587 − 5.653

n denotes number of collocationnodes

To evaluate the accuracy of the value function approximation, we implement an
instance of the problem in which capital fully depreciates every period (δ = 1). A
closed form expression of decision rules exist in this setting, making it possible to
assess the true error in the approximated solution over the state domain. We report
actual errors for the consumption decision rule ((1 − αβ)zkφ), from 1000 random
draws of state variable levels from their respective domains. Simulated consumption
levels (ct) are checked against the true consumption value (c̄t) and then normalized
by the true consumption value. The error term (E) is thus expressed as:

E =
∣
∣∣∣
ct − c̄t
c̄t

∣
∣∣∣ .

We construct two norms of E—the average (‖E‖1) and the maximum (‖E‖∞).
Table 1 displays the base 10 logarithms of these norms, by number of collocation nodes
used. In the case with five collocation points, the error on average is approximately one
dollar per every 1000 dollars. Approximation improves significantly as we increase
the number of collocation points—at ten collocation points, average error is reduced
to a dollar per million.

The tedious task of hand-coding the complementary conditions can be avoided
through a few lines of code in the EMP framework. The followingEMP input generates
the MCP for the stochastic neoclassical growth model:

min SUMSQR_RSDL s.t. alpha(s,t), def_SUMSQR_RSDL

max U(i,j) s.t. c(i,j), k(i,j),

def_U(i,j), def_KPrime(i,j), nonneg_Inv(i,j)

Note that this syntax automatically generates the first order conditions coupled with
the corresponding dual variables, as specified in (6).

5 N-Sector Stochastic GrowthModel

In this section we incorporate multiple sectors to the stochastic growth model, with
perfectly correlated productivity shocks across sectors. A social planner chooses the
consumption ({cst }∞t=0), investment ({I st }∞t=0), and labor supply trajectory ({Ls

t }∞t=0),
given the inverse of the elasticity of intertemporal substitution parameter (γ = 0.5),

123

Solving Stochastic Dynamic Programming Problems: a Mixed… 935

to solve the following optimization problem:

max
{cst ,I st ,Y s

t }
E

[∞∑

t=0

β t u(c1t , . . . , c
n
t)

1 − γ

1−γ
]

such that the following constraint equations are satisfied:

• Cobb–Douglas utility function with sectoral reference consumption levels, c̄s , and
expenditure share, ηs :

u(c1t , . . . , c
n
t) =

n∏

s=1

(
cst
c̄s

)ηs

,

n∑

s=1

ηs = 1;

• the law of motion for capital accumulation with capital depreciation rate, δ (=
0.07):

Ks
t+1 = (1 − δ)Ks

t + I st ∀s;

• market clearing conditions for labor with labor supply fixed to the sum of all
sectoral reference labor supply values:

L̄ =
n∑

s=1

Ls
t ∀t;

• Cobb–Douglas production function with factor share of capital, αs , productivity
shock, zt , and sectoral reference levels for output (Ȳ s), capital (K̄ s), and labor
supply (L̄s).ψs denotes the magnitude of impact of the productivity shock to each
sector:

Y s
t = (1 + ψs(e

zt − 1))Ȳ s
(
Ks
t

K̄ s

)αs
(
Ls
t

L̄s

)1−αs

∀s;

• stochastic productivity shock, zt is a random variable that follows the process:

zt = ρzt−1 + εt , ε ∼ N (0, σ 2), with ρ = 0.95 and σ = 0.007

• and lastly, the equation describing the market for current output, where �(s, s′) is
the unit demand for intermediate good s in sector ss.

Y s
t = cst + I st +

n∑

s′=1

�(s, s′)Y s′
t ∀s.

123

936 W. Chang et al.

Table 2 Sector specific reference values

Parameter Agriculture Manufacturing Services Energy

ηs 0.005 0.247 0.723 0.025

αs 0.518 0.438 0.203 0.730

ψs 0.278 0.222 0.148 0.353

c̄s 52.58 2822.32 8243.39 290.01

K̄ s 50.17 1747.22 1488.44 210.57

L̄s 46.77 2246.11 5833.64 77.91

Ȳ s 273.61 9074.22 13, 302.21 1153.50

The Bellman equation for the n-sector stochastic growth model is written as follows:

Vt (x)= max
{cs }ns=1,{I s }ns=1,{Ls }ns=1

u(c1, . . . , cn)

1 − γ

1−γ

+βE
{
Vt+1(K

1
′
, K 2

′
, . . . , Kn ′

, z′)|z}

s.t . u(c1, . . . , cn) =
n∏

s=1

(
cs

c̄s

)ηs

,

n∑

s=1

ηs = 1;

Ks ′ = (1 − δ)Ks + I s ∀s;

L̄ =
n∑

s=1

Ls

Y s = (1 + ψs(e
z − 1)) · Ȳ s

(
Ks

K̄ s

)αs
(
Ls

L̄s

)1−αs

∀s;
z′ = ρz + ε, ε ∼ N (0, σ 2)

Y s = cs + I s +
n∑

s′=1

�(s, s′)Y s′ ∀s.

Again we use a fourth degree complete Chebyshev polynomial interpolation with
five interpolation points for each state variable, ki ∈ [0, 5000] and z j ∈ [0.4, 1.6] for
i = {1, . . . , 5} and j = {1, . . . , 5}.

4-Sector Stochastic GrowthModel

As a numerical example, we solve a four sector stochastic optimal growth model.
The description of sectors and model parameters, derived from the GTAP8 database
(Aguiar et al. 2012), is summarized in Tables 2 and 3.

To obtain a numerical solution, we first apply Gauss–Hermite quadrature and dis-
cretize the expected value operator. This step amounts to discretizing the AR(1)
process using Gauss–Hermite quadrature. For random variable y ∼ N (μ, σ), a

123

Solving Stochastic Dynamic Programming Problems: a Mixed… 937

Table 3 Intermediate demand of goods (s) in sectors (ss)

�(s, s′) Agriculture Manufacturing Services Energy

AGR 35.03 167.59 18.06 0.010

MFR 71.88 2683.27 1352.60 125.590

SER 67.54 1397.65 3167.37 76.860

ENR 8.68 378.30 154.61 321.900

Gauss–Hermite approximation of the expected value E[h(y)] of some function h(·)
is evaluated as follows:

E[h(y)] =
m∑

i=1

1√
π

ωGH
i h

(
μ + σ

√
2ζi

) =
m∑

i=1

ωi h(μ + ζ i),

where ζi and ωi represent the original Gauss–Hermite nodes and weights. Given grid
points i ∈ {1, . . . ,m}, and disturbance term ε ∼ N (0, σ), where σ is the standard
deviation of the stochastic disturbance, ζ i then represents the normalized disturbance
associatedwithGauss–Hermite term i . Further discussion onGaussian quadratures can
be found in Miranda and Fackler (2004) and Judd (1998). We apply the quadrature
method to our application. The next period stochastic shock, zt+1 is a function of
normalized weights, ωi ; i.e.

zt+1,i = ρzt + ζ i

For the numerical examples that employ Gauss–Hermite quadratures presented in
this paper, we construct a 5-point Gauss–Hermite grid with the nodes and weights
specified in Table 5 of the “Appendix”.

Second, we use Smolyak’s sparse grid (Smolyak 1963) to deal with the curse of
dimensionality. Smolyak proposes a sparse grid method that allows for the efficient
integration and interpolation of functions on multidimensional hypercubes (Judd et al.
2014).We summarize themain idea of this particular non-product approach, explained
in Maliar and Maliar (2014).

The idea of this method is simple. Some elements produced by the tensor product
rule matter more in the approximation procedure than others. Smolyak’s method ranks
the elements of the tensor product by importance. A user-defined approximation level
parameter, determines the number of elements included in the sparse grid. The higher
the approximation level, the more elements of the tensor product is included. The
computational complexity of the problem increases polynomially in the dimension of
the state space, providing a way to avoid the curse of dimensionality in large-scale
applications. Illustration of the method in a two-dimensional state space is included
in the “Appendix”.

Our implementation of the model involved five unidimensional grid points for each
of the five state variables, with an approximation level of μ = 2. The Smolyak grid

123

938 W. Chang et al.

Table 4 Mean monthly inflow to reservoir (million cubic meters)

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Inflow 1.2 1.0 1.1 1.2 40.2 99.5 146.3 138.2 70.7 11.7 2.3 1.5

under this specification consists of 61 grid points. Note that the EMP framework
only requires localized changes to the DP program—namely, setting up the grid and
defining the polynomial form of the function approximant. Finding the equilibrium is
again automated via a few lines of EMP syntax.

Third, to provide the PATH solver with a good starting point, we use the nonlinear
certainty equivalent approximation (NLCEQ) method discussed in Cai et al. (2017).
Choosing a good starting point can be challenging, especially when the dimensionality
of the problem is high. As the name suggests, the method involves certainty equiv-
alent approximation—approximating the solution to the stochastic infinite horizon
DP problem by solving a finite-horizon optimization problem with perfect foresight.
By setting initial variable values to grid values at each collocation node, solving the
certainty equivalent problem can provide a good estimate of both the value and corre-
sponding optimal decisions at each node. We implement NLCEQ plus 5 iterations of
conventional VFI before passing off the solution to DP-MCP.

6 Stochastic Hydropower Planning

Some economic applications naturally take the form of a complementarity problem
as opposed to a nonlinear fixed point or a root finding problem (Miranda and Fackler
2004). These application types include general equilibriummodeling,Nashgames, and
some applications that involve numerous occasionally binding constraints, all of which
require the proper treatment of corner solutionswhen solving for the optimal policy.We
thus conclude our demonstration by applying our solution method to complementarity
problems.

The hydropower planning problem is an annual model of a single aggregated reser-
voir with a monthly release schedule for hydropower generation. The present model
is similar in dynamics to the model of water management on the North Platte River
in Nebraska presented in Howitt et al. (2002b). We begin with a brief overview of the
model.

Two state variables characterize water management at time t , namely Lt , the stock
of water in the reservoir and Dt , the inflow of water to the reservoir as a function of
precipitation levels. Inflow Dt consists of stochastic deviations from average monthly
inflow levels (displayed in Table 4.) characterizing the state variable as following a first
order autoregressive process. zt and rt denote the water retained and released every
month to generate electricity; if the capacity of the reservoir is exceeded, the excess
water runs down the spillway and bypasses the power plant. In other words, spills
(denoted st) balance the system when the reservoir overflows, but have no economic

123

Solving Stochastic Dynamic Programming Problems: a Mixed… 939

value in the model. The maximum capacity of the reservoir dam is 250 million cubic
meters (MCM).

Lastly, monthly electricity generation must meet a fixed monthly demand of 140
megawatt hours (MWh). In case electricity generated by hydropower does not meet
demand, non-hydro electricity generation is employed, incurring marginal cost equal
to the market price of electricity.

The Model

Water at the start of the month is either retained or released to generate electricity:

Lt ≥ zt + rt

Total generation of electricity through hydro (rt) and non-hydro (xt) sources must
equal the demand for electricity. Demand (denoted gt) is fixed in each month:

rt + xt = gt

The projected level of water at the start of the subsequent month (L̃ t+1) depends on
howmuch water is currently stored (zt), howmuch inflow is projected to occur (D̃t+1)
and how much water will be spilled (̃st+1). Projected variable levels are represented
using a tilde:

L̃ t+1 = zt + D̃t+1 − s̃t+1

The price of water in the subsequent month (p̃t+1) is imputed on the basis of the
imputed water price (value of water as a function of the state):

p̃t+1 = V
(
L̃ t+1, D̃t+1 ;α

)

Lastly, inflow Dt follows an AR1 process such that the projected inflow D̃t+1 is a
function of the mean monthly inflow Dt , the coefficient for rainfall persistence, ρ, the
realized inflow levels, Dt , and a normally distributed disturbance term ε ∼ N (0, σ)

that represents stochastic departures from the model.

D̃t+1 = Dt+1

[
1 + ρ

(
Dt

Dt
− 1

)
+ εt+1

]

To discretize the AR1 process, we again use a 5-point Gauss–Hermite quadrature
method. Given normalizedGauss–Hermite disturbance ζ i , associatedwith normalized
weight, ωi , we can rewrite the rainfall projection equation as follows:

D̃t+1,i = Dt+1

(
1 + ρ

(
Dt

Dt
− 1

)
+ ζ i

)
∀i ∈ {1, . . . , 5}.

The objective is to minimize non-hydro electricity generation and maximize the
value of water retained, while meeting the demand for electricity. Every month, the

123

940 W. Chang et al.

decision maker’s problem is characterized by the following objective function:

max
rt

−cx

(
xt (rt)

x

)η

+ βE

{
p̃t+1 L̃ t+1(rt)|Dt

}
,

where c is the reference cost of non-hydro generation, x is the reference supply of
non-hydro generation and η, the elasticity of non-hydro supply. As we estimate the
projected shadow price of water, p̃t+1 using projection, we can rewrite the objective
function as follows:

−cx

(
xt
x

)η

︸ ︷︷ ︸
contribution

+β E

{(
V
(
L̃ t+1, D̃t+1 ;α

)
)
L̃ t+1|Dt

}

︸ ︷︷ ︸
carry−over

.

Under this objective, we continue to write the complementary conditions that char-
acterize equilibrium.

The condition on non-hydro electricity generation states that non-hydro electricity
generation only takes place when the marginal cost of non-hydro generation equals
the market price of electricity (pet):

cη

(
xt
x

)η−1

≥ pet ⊥ xt ≥ 0.

Similarly, hydro electricity generation only takes place when the shadow price of
water is equal to that of electricity:

pt ≥ pet ⊥ rt ≥ 0.

Water is only retained to equate the shadow price of water to the projected value of
water in the future:

pt ≥ β
∑

i

ωi

[
∂V

(
L̃ t+1,i , D̃t+1,i ;α

)
L̃ t+1,i

∂zt

]
⊥ zt ≥ 0.

And lastly, spilling water amounts to free disposal. This assures that the shadow
value of water in subsequent months is nonnegative:

∂V
(
L̃ t+1,i , D̃t+1,i ;α

)
L̃ t+1,i

∂ s̃t+1,i
≥ 0 ⊥ st ≥ 0.

MCP Formulation

Wepresent theMCP formulationof the hydropower planningproblem.For conciseness
of notation, we omit the time subscripts:

L j ≥ z j,k + r j,k ⊥ p ≥ 0, ∀(j, k)

123

Solving Stochastic Dynamic Programming Problems: a Mixed… 941

r j,k + x j,k = g j,k ⊥ pe ≥ 0, ∀(j, k)

L̃ j,k,i = zt + D̃ j,k,i − s̃ j,k,i ⊥ L̃ j,k,i free, ∀(j, k, i)

p̃ j,k,i = V
(
L̃ j,k,i , D̃ j,k,i ;α

) ⊥ p̃ j,k,i is free, ∀(j, k, i)

cη
x j,k
x

(η−1) ≥ pej,k ⊥ x j,k ≥ 0, ∀(j, k)

p j,k ≥ pej,k ⊥ r j,k ≥ 0, ∀(j, k)

p j,k ≥ β
∑

i

ωi

[
∂V

(
L̃ j,k,i , D̃ j,k,i ;α

)
L̃ j,k,i

∂z j,k

]
⊥ z j,k ≥ 0, ∀(j, k)

∂V
(
L̃ j,k,i , D̃ j,k,i ;α

)
L̃ j,k,i

∂ s̃ j,k,i
≥ 0 ⊥ s̃ j,k,i ≥ 0, ∀(j, k, i)

The application of DP-MCP to a complementarity problem is no different from that
of a maximization problem. In place of the first order conditions of the maximization
problem,we nowhave a set of complementarity conditions that characterize the natural
equilibrium of the economic system.

We solve the hydropower planning problem using a weighted residual method
with 10 grid points for both precipitation (Dk) and reservoir water levels (Lk). The
value function for the shadow price of water is estimated using a 4th order complete
Chebyshev polynomial. DP-MCP couples the MCP conditions with the optimality
conditions for least-squares value function fitting:

∂
∑

j,k

(
p jk − V (L j , Dk ;α)

)2

∂αl
= 0 ⊥ αl free, ∀l ∈ {1, . . . , 10}

We choose 10 Chebyshev interpolation nodes for the reservoir water level based
on the minimum and maximum water levels permitted for the operation of the dam.
Similarly, the nodes for water inflow, Dk , are determined by the average monthly
inflow D and the normalized standard deviation of inflow σ such that: Dk ∈ [D −
3σ, D + 3σ], k ∈ {1, . . . , 10}.

To illustrate theMCP framework’s optimal policy at both the intensive and extensive
margins, we display the optimal release schedule and approximated shadow prices of
water in Figs. 2, 3, 4 and 5. In each of the plots, we hold fixed the reservoir water
level to be high (grid point corresponding to highest water level) or low, and vary the
precipitation levels. Grid points for precipitation range from 1 to 10, with grid point
1 representing the highest precipitation level. The resulting shadow price of water is
high when both the stock of water and inflow are low, and is equal to zero during the
rainy months especially when the reservoir is sufficiently filled. The optimal release
schedule displays the opposite dynamics as anticipated.

Under the value function obtained, we run a 60 month simulation of stochastic
inflows for which we solve for the optimal water release (hydropower generation)
trajectory. The optimal release schedule is displayed in Fig. 6.

123

942 W. Chang et al.

Fig. 2 Shadow price of water approximation for high precipitation scenario

Fig. 3 Shadow price of water approximation for low precipitation scenario

123

Solving Stochastic Dynamic Programming Problems: a Mixed… 943

Fig. 4 Release schedule for high precipitation scenario

Fig. 5 Release schedule for low precipitation scenario

123

944 W. Chang et al.

Fig. 6 Simulation result for release schedule

7 Conclusion

We introduce a complementarity (MCP) formulation for discrete time, continuous-
state dynamic programming problems. We convert projection-based value function
iteration (VFI)—a solution method traditionally based on fixed-point iteration—into
a system of equilibrium conditions. These equilibrium conditions consist of equations
and inequalities that characterize an equilibrium between two optimization problems
of VFI: value function approximation and Bellman equation maximization. The MCP
approach (DP-MCP) hence replaces the iterative aspect ofVFIwith a one-shot solution
to a square system of complementary conditions.

DP-MCP however requires both the primal and dual equations to characterize the
equilibrium, which can increase the scope for coding error. The use of the Extended
Mathematical Programming (EMP) framework in GAMS, can mitigate such errors
by automating the formulation and implementation of the MCP. The EMP framework
also enables the modeler to readily adapt the solve process to the properties of the DP
problem. If the performance of the resulting DP-MCP is relies heavily on an adequate
starting point, a hybrid approach—running conventionalVFI to provide a good starting
point for the complementarity solver—can be deployed with a line of code, to enhance
the computational performance of DP-MCP.

123

Solving Stochastic Dynamic Programming Problems: a Mixed… 945

Appendix

A. Value Function Iteration Using Collocation

Value function iteration is already a workhorse of numerous studies and textbooks
aimed to make DP more accessible to numerical economic models (Howitt et al.
2002a; Aruoba and Fernández-Villaverde 2014; Aruoba et al. 2006; Manuelli and
Sargent 2009; Sargent and Stachurski 2015). In this section of the “Appendix”, we
describe the conventional collocation based VFI algorithm, in which the least-squares
norm is used to obtain coefficients for the value function approximant.

The Bellman equation in a deterministic infinite-horizon setting takes the following
form:

V (x) = max
a∈A

[C(x, a) + βV (x ′)] s.t . x ′ = h(x, a) (7)

where x is the vector of state variables, A is the action space and C , the immediate
contribution function. β ∈ (0, 1) is the discount factor. As a standard numerical
algorithm for finding V ∗, VFI ismotivated by the contraction properties of theBellman
equation. VFI updates the value function via the Bellman operator, given the current
estimate of the value function (V n(x)); i.e.

V n+1(x) = max
a∈A

[C(x, a) + βV n(x ′)] s.t . x ′ = h(x, a)

By the contraction mapping theorem, the solution to the iterative scheme converges
to the true value function for any initial guess V 0(·) (Judd 1998).
Algorithm.Value Function IterationUsingCollocation for InfiniteHorizon Prob-
lems

1. Set m collocation points in state space and a functional form for V (x ;α);
for ∀i ≤ m, choose approximation nodes xi ∈ X ;
fix a tolerance parameter ε;
denote V n(x) to be value estimate output for iteration count n.

2. Initialize estimate of value function V 0(x).
3. For n ≥ 1: obtain parameters αn−1 s.t . V (xi ;αn−1) = V n−1(xi)

solve minαn−1

[
∑

i

(
V n−1(xi) − V (xi ;αn−1)

)2
]

4. For ∀i , compute:

V n(xi) = maxai∈A

[
C(xi , ai) + βV (xi ′ ;αn−1)

]
s.t. x ′

i = h(xi , ai).

5. If ‖V n − V n−1‖ < ε(1 − β)/2β, stop;
else set n = n + 1 and go to step 3.

The algorithm seeks an approximation to the value function such that the sum of the
maximized contribution and the discounted carry-over value, based on the approxi-
mant, maximizes the total value function. The value iteration procedure solves for two
objectives. The function approximation objective in step 3 computes coefficients of
the value function approximant, by minimizing the sum of square deviations between

123

946 W. Chang et al.

the maximized Bellman value at each collocation point, and the function approximant.
The next objective, (step 4) is to maximize the Bellman value via the control variable,
given the coefficients of the approximated value function.

Conventional VFI is stable; yet without the use of techniques that help convergence
(e.g. implementing Howard’s improvement, exploiting concavity or monotonicity of
value function), the procedure is typically known to be slow. The slowness is particu-
larly salient in economic growth models with a discount factor close to unity. Again,
without the use of frontier numerical methods, the use of VFI is limited by the curse
of dimensionality. Finding the equilibrium quickly becomes a daunting computational
task as we increase the dimensions of the state space.

B. Gauss–Hermite Approximation Data

See Table 5

Table 5 Gauss–Hermite
approximation data i ζi ωi

1 2.0202 0.02

2 0.9586 0.3936

3 0 0.9453

4 − 0.9586 0.3936

5 − 2.0202 0.02

C. Illustration of Smolyak Sparse Grid Method

We illustrate the method in a two dimensional state space. Consider the extrema of the

Chebyshev polynomial function as grid points

{
−1, −1√

2
, 0, 1√

2
, 1

}
. It is not essential

to use these points for the Smolyak method. Other unidimensional grid points can
be used instead, per the collocation points used in this example. Using the common
tensor product would produce 25 grid points

{
(−1,−1), (−1, −1√

2
), . . .

}
.

The Smolyak grid samples grid points in the following way. We first construct a
sequence of nested sets, Si , that exhaust the unidimensional grid previously defined;
i.e.

i = 1 → S1 = {
0
}

i = 2 → S2 = { − 1, 0, 1
}

i = 3 → S3 =
{

− 1,
−1√
2
, 0,

1√
2
, 1

}

123

Solving Stochastic Dynamic Programming Problems: a Mixed… 947

From all possible two-dimensional tensor products using elements of sets, Si , the
Smolyak method chooses grid points such that:

i1 + i2 ≤ d + μ

where i1 and i2 are the set numbers corresponding to each dimension; d is the number
of dimensions of the state space; and μ is the approximation level parameter. With
μ = 2, the Smolyak sparse grid consists of 13 points.

The Smolyak polynomials that accompany the sparse grid is constructed in a similar
way. Instead of unidimensional grid points, the sequence of sets now correspond to
unidimensional Chebyshev basis functions. i.e.

i = 1 → S1 = {
1
}

i = 2 → S2 = {
1, x, 2x2 − 1

}

i = 3 → S3 =
{
1, x, 2x2 − 1, 4x3 − 3x, 8x4 − 8x2 + 1

}
.

The GAMS code for the 4-sector model automates the construction of the Smolyak
grid and polynomial, given the dimension and approximation level of the problem.
Smolyak’s method was introduced to dynamic economic modeling in Krueger and
Kubler (2004), and is currently used as a popular non-product approach to avoid the
curse of dimensionality in numerical DP modeling (Fernández-Villaverde et al. 2015;
Lemoine and Rudik 2017).

Appendix: GAMS Code

A. Stochastic Neoclassical GrowthModel Data File: data.gms

$title DP -MCP: Stochastic Neoclassical Growth Model Using Chebyshev
Collocation: Data File

Sets s State variables
/cap ,phi/,

ik Nodes for capital at which value function is evaluated
/1*5/,

ip Nodes for productivity
/1*5/,

ic Dimension of Chebyshev polynomial
/1*5/,

iter Dynamic programming iterations
/1*10/;

alias (ik ,jk)
alias (ip ,jp)
alias (ic ,jc)
alias (s,ss)

Parameters
beta Utility discount factor /0.9869/ ,
delta Depreciation rate /0.0196/ ,
alpha Capital value share /0.4/,

123

948 W. Chang et al.

pi PI /3.141593/;

* Parameters to define CS Polynomial terms
* Defined for both capital (K) and productivity (p)
Parameters

arg_k , arg_p Argument of cosine weighting function ,
x_k , x_p Node value for the state variable on the

unit interval ,
lo_k , lo_p Lowerbound on stock variable ,
up_k , up_p Upperbound on stock variable ,
csbar(ic) Chebyshev polynomial terms ,
cap(ik) Stock level value at node for grid point

calculation ,
phi(ip) Stock level value at node for grid point

calculation ,
sscap Steady -state capital;

Parameters
sigma_s Unconditional std deviation of phi ,
sigma Standard deviation of AR1 disturbance term

/0.007/ ,
rho Persistence term in AR1 process

/0.95/ ,
p_mean Mean value of productivity phi

/5/,
p_std Standard deviation of phi;

** Set lower and upper bound on state variables
* Productivity
sigma_s = sigma /(1-rho **2) **0.5;
lo_p = p_mean - 3 * sigma_s;
up_p = p_mean + 3 * sigma_s;

* Capital
sscap = (beta * alpha * p_mean)**(1/(1 - alpha));
lo_k = 0.7 * sscap;
up_k = 1.3 * sscap;

* Define basis for chebyshev polynomial expansion
* Capital
arg_k(ik) = ((2* ord(ik) -1)*pi)/(2* card(ik));
x_k(ik) = cos(arg_k(ik));
cap(ik) = (lo_k+up_k+(up_k -lo_k)*x_k(ik))/2;

* Productivity
arg_p(ip) = ((2* ord(ip) -1)*pi)/(2* card(ip));
x_p(ip) = cos(arg_p(ip));
phi(ip) = (lo_p+up_p+(up_p -lo_p)*x_p(ip))/2;

*--
* Define Chebyshev Basis Polynomial Functions
*--

$eval ptcard (round(card(ic)/2))

set pt Chebyshev polynomial terms /1 * %ptcard%/,
csp(ic ,pt) Index for Chebyshev polynomial coefficients and

exponents;

Parameters
ce(ic,pt) Exponents of state variables for Chebyshev

Polynomial terms;

* Assign polynomial coefficients to express each chebyshev
polynomial basis

* e.g. cc("1" ,"1") = coefficient for 1st polynomial term of 1st
order Chebyshev basis

123

Solving Stochastic Dynamic Programming Problems: a Mixed… 949

table cc(ic ,pt) Coefficients of state variables for Chebyshev
Polynomial terms

1 2 3
1 1
2 1
3 2 1
4 4 3
5 8 8 1;

csp(ic ,pt) = yes$cc(ic,pt);

* Exponents are assigned
ce(csp(ic ,pt)) = ord(ic) -1 - (ord(pt) -1)*2;

* Signs of coefficients alternate
cc(csp(ic ,pt)) = cc(ic,pt) * power(-1,(ord(pt) -1));

*--
* Apply above parameters to compute chebyshev polynomial bases
*--

Parameters
kbar(ik ,ic) Chebyshev polynomial bases for function

approximation ,
phibar(ip ,ic) Chebyshev Polynomial bases for function

approximation;

*--

kbar(ik ,ic) = sum(pt$csp(ic ,pt), cc(ic ,pt) * power(x_k(ik),ce(ic ,pt
)));

phibar(ip ,ic) = sum(pt$csp(ic ,pt), cc(ic ,pt) * power(x_p(ip),ce(ic,
pt)));

*--
* Function Approximation using Complete Chebyshev Polynomial
*--

$eval cardcp ((card(ic) * (card(ic)+1))/2)

set cp Terms in the complete polynomial /1 * %cardcp %/;
alias(cp ,cpp)

Parameters cpe(s,cp) Polynomial term number in the
complete polynomial;

loop(ic ,
loop(cp$(ord(cp) ge (sum(jc$(ord(jc) le ord(ic)),jc.val) + 1

- ord(ic)) and
ord(cp) le (sum(jc$(ord(jc) le ord(ic)),jc.val))),

cpe("cap",cp) = card(ic) + 1 - ic.val;
cpe("phi",cp) = ord(cp) -(sum(jc$(ord(jc) le ord(ic)),jc

.val)-ord(ic));
);

);

*--
* Value function based on Chebyshev polynomial terms
*--
* Least -squares estimation
$macro PVL(kbar ,phibar ,ik ,ip) (sum(cp , A(cp) * \

sum(ic ,kbar(ik ,ic)$(ic.val eq cpe("cap",cp
))) * \

sum(ic ,phibar(ip ,ic)$(ic.val eq cpe("phi",
cp)))))

123

950 W. Chang et al.

* Value function computation
$macro PV(KCS ,phitcs ,ik ,ip ,jp) (sum(cp , A(cp) * \

sum(ic ,KCS(ik ,ip ,ic)$(ic.val eq cpe("cap",
cp))) * \

sum(ic ,phitcs(jp ,ic)$(ic.val eq cpe("phi",
cp)))))

* Normalized value of K used in Chebyshev Polynomials
$macro KN(ik ,ip) ((K(ik ,ip)-(lo_k+up_k)/2)/((up_k -lo_k)/2))

*--
* Transition Matrix
*--
Table tmatrix(ip ,jp)

1 2 3 4 5
1 0.9727 0.0273 0 0 0
2 0.0041 0.9806 0.0153 0 0
3 0 0.0082 0.9837 0.0082 0
4 0 0 0.0153 0.9806 0.0041
5 0 0 0 0.0273 0.9727;

Parameters
phit Grid point values of projected phi (productivity)

,
phitn Normalized grid point values of projected phi ,
phitcs CS Polynomial terms used for value approximation;

phit(ip) = phi(ip);
phitn(ip) = ((phit(ip) -(lo_p+up_p)/2)/((up_p -lo_p)/2));

*--
* Apply Chebyshev polynomial algorithm on productivity
*--
phitcs(ip ,ic) = sum(pt$csp(ic ,pt), cc(ic ,pt) * power(phitn(ip),ce(

ic ,pt)));

B. Stochastic Neoclassical GrowthModel: Hand-CodedMCP Formulation

$title DP -MCP: Stochastic Neoclassical Growth Model Using Chebyshev
Collocation: MCP Version

$include data.gms

Variables
OBJBELL Bellman objective
OBJLSQR Least -squares objective
C(ik,ip) Consumption ,
K(ik,ip) Subsequent period capital stock ,
U(ik,ip) Nodal approximations of utility ,
A(cp) Terms in the value function approximation ,
KCS(ik ,ip ,ic) Chebyshev polynomial terms (ic) for capital

,
P(ik,ip) Shadow price of capital ,
P_I(ik ,ip) Shadow price of investment;

Equations
utility Present value benefit function ,
market Market for current output ,
invest Constraint for investment ,
objdef Least squares objective ,
k_csdef Chebyshev polynomial terms for capital ,
foca First order condition for coefficient A,
copt First order condition for consumption ,

123

Solving Stochastic Dynamic Programming Problems: a Mixed… 951

kopt First order condition for capital ,
udef Defines nodal utility;

*--
* NLP Equations
*--
utility .. OBJBELL =e= sum((ik ,ip), (1-beta) * log(C(ik ,ip))

+
beta * sum(jp , tmatrix(ip ,jp) * PV(KCS ,

phitcs ,ik ,ip ,jp)));

market(ik ,ip).. C(ik,ip) + K(ik,ip) =e= phi(ip) * cap(ik)**alpha;

invest(ik ,ip).. cap(ik) * (1 - delta) - K(ik ,ip) =l= 0;

objdef.. OBJLSQR =e= sum((ik ,ip), sqr(PVL(kbar ,phibar ,ik ,
ip) - U(ik,ip)));

k_csdef(ik,ip ,ic)..
KCS(ik ,ip,ic) =e= sum(pt$csp(ic ,pt), cc(ic ,pt) * power(

KN(ik ,ip),ce(ic ,pt)));
*--
* MCP Equations
*--
foca(cpp).. sum((ik ,ip), 2 *

(PVL(kbar ,phibar ,ik ,ip) - U(ik ,ip)) *
sum(ic ,kbar(ik ,ic)$(ic.val eq cpe("cap",

cpp))) *
sum(ic ,phibar(ip ,ic)$(ic.val eq cpe("phi",

cpp)))
) =e= 0;

copt(ik ,ip).. P(ik,ip) =g= (1-beta)/C(ik,ip);

kopt(ik ,ip).. P(ik,ip) + P_I(ik ,ip) =g= beta /((up_k - lo_k)/2)
*

sum(jp , tmatrix(ip ,jp) *
sum(cp , A(cp) * sum(ic , phitcs(jp ,ic)$(ic.val eq cpe

("phi",cp))) *
sum(ic,

sum(pt ,
cc(ic ,pt)$(csp(ic ,pt) and ce(ic,pt) ge 1) *

ce(ic ,pt)$(csp(ic ,pt) and ce(ic ,pt) ge 1)
*

power(KN(ik ,ip),ce(ic ,pt)$(ce(ic ,pt) ge
1) -1)

)$(ic.val eq cpe("cap",cp))
)

)
);

udef(ik ,ip).. U(ik,ip) =e= (1-beta) * log(C(ik ,ip)) +
beta * sum(jp , tmatrix(ip ,jp) * PV(KCS ,

phitcs ,ik ,ip ,jp));

model bellman /utility ,market ,invest ,k_csdef /;
model lsqr /objdef /;
model oneshot_mcp /foca.A, copt.C, kopt.K, market.P, invest.P_I ,

udef.U, k_csdef.KCS/;
*--
* Initialize and Solve
*--
C.LO(ik ,ip) = 1e-6;
K.LO(ik ,ip) = 0;
A.L(cp) = 0;
C.L(ik ,ip) = phi(ip) * cap(ik)**alpha;
*--
* Conventional Value Iteration

123

952 W. Chang et al.

*--
* Parameters for value function iteration
Parameters

dev /1/,
itlog Iteration log ,
residuals Sum of squared Bellman residuals;

* Initial value:
U.FX(ik ,ip) = (1-beta) * log(C.L(ik ,ip));
file ktitle; ktitle.lw=0;

bellman.solvelink = 2;
loop(iter$round(dev ,6),

itlog(iter ,cp) = A.L(cp);

A.LO(cp) = -INF; A.UP(cp) = +INF;

solve lsqr using nlp minimzing OBJLSQR;

dev = smax(cp , abs(A.L(cp)-itlog(iter ,cp)));

itlog(iter ,"dev") = dev;

A.FX(cp) = A.L(cp);

solve bellman using nlp maximizing OBJBELL;
abort$(bellman.solvestat <>1 and bellman.modelstat >2) "Bellman

does not solve .";
$ondotl

U.FX(ik ,ip) = (1-beta) * log(C(ik ,ip)) +
beta * sum(jp, tmatrix(ip,jp) * PV(KCS ,phitcs ,

ik ,ip ,jp));
residuals(iter) = smax((ik,ip), abs(U(ik ,ip) - PVL(kbar ,

phibar ,ik ,ip)));
$offdotl

put ktitle;
put_utility ’title ’ /’Iter: ’,iter.tl ,’ Deviation = ’,dev;

);
*--
* Pass off NLP solution to MCP solver as starting point
*--
A.LO(cp) = -INF;
A.UP(cp) = +INF;
U.UP(ik ,ip) = +inf;
U.LO(ik ,ip) = -inf;
P.L(ik ,ip) = market.m(ik ,ip);
P_I.L(ik ,ip) = -invest.m(ik ,ip);
P_I.UP(ik ,ip) = 0;
oneshot_mcp.iterlim = 1000;
solve oneshot_mcp using mcp;

C. Stochastic Neoclassical GrowthModel: Automated EMP Formulation

$title DP -MCP: Stochastic Neoclassical Growth Model Using Chebyshev
Collocation: EMP Version

$include data.gms

Variables
OBJBELL(ik ,ip) Bellman objective
OBJLSQR Least -squares objective
C(ik,ip) Consumption ,

123

Solving Stochastic Dynamic Programming Problems: a Mixed… 953

K(ik,ip) Subsequent period capital stock ,
A(cp) Terms in the value function approximation ,
KCS(ik ,ip ,ic) Chebyshev polynomial terms (ic) for capital

,
P(ik,ip) Shadow price of capital ,
P_I(ik ,ip) Shadow price of investment;

Equations
utility Present value benefit function ,
market Market for current output ,
invest Constraint for investment ,
objdef Least squares objective ,
k_csdef Chebyshev polynomial terms for capital ,
foca First order condition for coefficient A,
copt First order condition for consumption ,
kopt First order condition for capital ,
udef Defines nodal utility;

*--
* NLP Equations
*--
utility(ik,ip).. OBJBELL(ik ,ip) =e= (1-beta) * log(C(ik,ip)) +

beta * sum(jp , tmatrix(ip ,jp) * PV
(KCS ,phitcs ,ik ,ip ,jp);

market(ik ,ip).. C(ik,ip) + K(ik,ip) =e= phi(ip) * cap(ik)**alpha;

invest(ik ,ip).. cap(ik) * (1 - delta) - K(ik ,ip) =l= 0;

objdef.. OBJLSQR =e= sum((ik ,ip), sqr(PVL(kbar ,phibar ,ik ,
ip) - OBJBELL(ik ,ip)));

k_csdef(ik,ip ,ic)..
KCS(ik ,ip,ic) =e= sum(pt$csp(ic ,pt), cc(ic ,pt) * power(

KN(ik ,ip),ce(ic ,pt)));

model oneshot_emp /objdef ,utility ,market ,invest ,k_csdef /;
*--
* Generate EMP Info File
*--
$onecho > empfile.txt
equilibrium
min OBJLSQR s.t. A(cp), objdef
max OBJBELL(ik ,ip) s.t. C(ik ,ip), K(ik ,ip), KCS(ik ,ip ,ic), utility(

ik ,ip),
market(ik ,ip), invest(ik ,ip), k_csdef(ik ,ip ,ic)

$offecho
$libinclude empmodel empfile.txt
*--
* Initialize and Solve
*--
C.LO(ik ,ip) = 1e-6;
K.LO(ik ,ip) = 0;
A.L(cp) = 0;
C.L(ik ,ip) = phi(ip) * cap(ik)**alpha;

* 5 iterations of conventional VFI to establish starting point
for DP -MCP

$onecho > selkie.opt
major_iteration_limit 5
$offecho
option emp = selkie;
oneshot_emp.optfile = 1;
solve oneshot_emp using emp;
* Solve with DP -MCP
option emp = jams;
solve oneshot_emp using emp;

123

954 W. Chang et al.

References

Aguiar, A., McDougall, R., & Narayanan, B. (2012). Global trade, assistance, and production: The gtap 8
data base. West Lafayette, IN: Center for Global Trade Analysis, Purdue University.

Aruoba, S. B., & Fernández-Villaverde, J. (2014). A comparison of programming languages in economics.
National Bureau of Economic Research: Technical report.

Aruoba, S. B., Fernandez-Villaverde, J., & Rubio-Ramirez, J. F. (2006). Comparing solution methods for
dynamic equilibrium economies. Journal of Economic Dynamics and Control, 30(12), 2477–2508.

Cai, Y. (2018). Computational methods in environmental and resource economics. Available at SSRN.
Cai, Y., & Judd, K. L. (2014). Advances in numerical dynamic programming and new applications. In

Handbook of computational economics (Vol. 3, pp. 479–516). Elsevier.
Cai, Y., & Judd, K. L. (2015). Dynamic programming with Hermite approximation.Mathematical Methods

of Operations Research, 81(3), 245–267.
Cai, Y., Judd, K. L., & Lontzek, T. S. (2012). Dsice: A dynamic stochastic integrated model of climate and

economy.
Cai, Y., Judd, K. L., Thain, G., & Wright, S. J. (2015). Solving dynamic programming problems on a

computational grid. Computational Economics, 45(2), 261–284.
Cai,Y., Judd,K.,&Steinbuks, J. (2017).Anonlinear certainty equivalent approximationmethod for dynamic

stochastic problems. Quantitative Economics, 8(1), 117–147.
Dirkse, S. P., & Ferris, M. C. (1995). The PATH solver: A nommonotone stabilization scheme for mixed

complementarity problems. Optimization Methods and Software, 5(2), 123–156.
Dubé, J.-P., Fox, J. T., & Su, C.-L. (2012). Improving the numerical performance of static and dynamic

aggregate discrete choice random coefficients demand estimation. Econometrica, 80(5), 2231–2267.
Fernández-Villaverde, J., Gordon, G., Guerrón-Quintana, P., & Rubio-Ramirez, J. F. (2015). Nonlinear

adventures at the zero lower bound. Journal of Economic Dynamics and Control, 57, 182–204.
Ferris, M. C., & Munson, T. S. (2000). Complementarity problems in gams and the PATH solver. Journal

of Economic Dynamics and Control, 24(2), 165–188.
Ferris, M. C., Dirkse, S. P., Jagla, J.-H., & Meeraus, A. (2009). An extended mathematical programming

framework. Computers & Chemical Engineering, 33(12), 1973–1982.
Howitt, R., Msangi, S., Reynaud, A., & Knapp, K. (2002a). Using polynomial approximations to solve

stochastic dynamic programming problems: Or a ’betty crocker’ approach to sdp. Davis, CA: Uni-
versity of California.

Howitt, R. E., Reynaud, A., Msangi, S., Knapp, K. C., et al. (2002b). Calibrated stochastic dynamic models
for resource management. In The 2nd world congress of environmental and resource economists (Vol.
2427).

Judd, K. L. (1998). Numerical methods in economics. MIT press.
Judd, K. L., Maliar, L., Maliar, S., & Valero, R. (2014). Smolyak method for solving dynamic economic

models: Lagrange interpolation, anisotropic grid and adaptive domain. Journal of Economic Dynamics
and Control, 44, 92–123.

Kim, Y., & Ferris, M. C. (2018). Selkie: A model transformation and distributed solver for equilibrium
problems. Technical report, University of Wisconsin-Madison.

Kim, Y., & Ferris, M. C. (2019). Solving equilibrium problems using extended mathematical programming.
Mathematical programming computation. https://doi.org/10.1007/s12532-019-00156-4.

Krueger, D., & Kubler, F. (2004). Computing equilibrium in olg models with stochastic production. Journal
of Economic Dynamics and Control, 28(7), 1411–1436.

Lau, M. I., Pahlke, A., & Rutherford, T. F. (2002). Approximating infinite-horizon models in a complemen-
tarity format: A primer in dynamic general equilibrium analysis. Journal of Economic Dynamics and
Control, 26(4), 577–609.

Lemoine, D., & Rudik, I. (2017). Managing climate change under uncertainty: Recursive integrated assess-
ment at an inflection point. Annual Review of Resource Economics, 9, 117–142.

Lemoine,D.,&Traeger,C. (2014).Watchyour step:Optimal policy in a tipping climate.AmericanEconomic
Journal: Economic Policy, 6(1), 137–66.

Lemoine, D., & Traeger, C. P. (2016). Economics of tipping the climate dominoes. Nature Climate Change,
6(5), 514.

Maliar, L., &Maliar, S. (2014). Numerical methods for large-scale dynamic economicmodels. InHandbook
of computational economics (Vol. 3, pp. 325–477). Elsevier.

123

https://doi.org/10.1007/s12532-019-00156-4

Solving Stochastic Dynamic Programming Problems: a Mixed… 955

Maliar, L., & Maliar, S. (2015). Merging simulation and projection approaches to solve high-dimensional
problems with an application to a new Keynesian model. Quantitative Economics, 6(1), 1–47.

Manuelli, R. E., & Sargent, T. J. (2009). Exercises in dynamic macroeconomic theory. Cambridge, MA:
Harvard University Press.

Mathiesen, L. (1985). Computation of economic equilibria by a sequence of linear complementarity prob-
lems. In Economic equilibrium: Model formulation and solution (pp. 144–162). Springer.

Miranda, M. J., Fackler, P. L. (2004). Applied computational economics and finance. MIT press.
Powell, W. B. (2011). Approximate dynamic programming: Solving the curses of dimensionality (Vol. 842).

Hoboken, NJ: Wiley.
Rasmussen, T. N., & Rutherford, T. F. (2004). Modeling overlapping generations in a complementarity

format. Journal of Economic Dynamics and Control, 28(7), 1383–1409.
Rudik, I. (2016). Optimal climate policy when damages are unknown. Available at SSRN 2516632.
Rust, J. (1996). Numerical dynamic programming in economics. Handbook of Computational Economics,

1, 619–729.
Rutherford, T. F. (1995). Extension of gams for complementarity problems arising in applied economic

analysis. Journal of Economic Dynamics and Control, 19(8), 1299–1324.
Sargent, T., & Stachurski, J. (2015). Quantitative economics with python. Technical report, Lecture Notes:

Technical report.
Smolyak, S. (1963).Quadrature and interpolation formulas for tensor products of certain classes of functions.

Soviet Mathematics Doklady, 4, 240–243.
Stokey, N. L. (1989). Robert E with Edward C. Prescott Lucas Jr. Recursive methods in economic dynamics.
Su, C.-L., & Judd, K. L. (2012). Constrained optimization approaches to estimation of structural models.

Econometrica, 80(5), 2213–2230.
Tauchen, G. (1986). Finite state Markov-chain approximations to univariate and vector autoregressions.

Economics Letters, 20(2), 177–181.
Traeger, C. P. (2014a). A 4-stated dice: Quantitatively addressing uncertainty effects in climate change.

Environmental and Resource Economics, 59(1), 1–37.
Traeger, C. P. (2014b). Why uncertainty matters: Discounting under intertemporal risk aversion and ambi-

guity. Economic Theory, 56(3), 627–664.
Wright, S., & Nocedal, J. (1999). Numerical optimization. Springer Science, 35, 67–68.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Solving Stochastic Dynamic Programming Problems: A Mixed Complementarity Approach
	Abstract
	1 Introduction
	2 DP-MCP: Dynamic Programming as a Mixed Complementarity Problem
	3 The Extended Mathematical Programming (EMP) Framework
	4 Stochastic Neoclassical Growth Model
	DP-MCP Formulation

	5 N-Sector Stochastic Growth Model
	4-Sector Stochastic Growth Model

	6 Stochastic Hydropower Planning
	7 Conclusion
	Appendix
	A. Value Function Iteration Using Collocation

	B. Gauss–Hermite Approximation Data
	C. Illustration of Smolyak Sparse Grid Method
	Appendix: GAMS Code
	A. Stochastic Neoclassical Growth Model Data File: data.gms
	B. Stochastic Neoclassical Growth Model: Hand-Coded MCP Formulation
	C. Stochastic Neoclassical Growth Model: Automated EMP Formulation

	References

