

Modeling Sectoral Labor Transitions with WiNDC

Presenter: Jonathon Becker (NREL) -- Jon.Becker@NREL.gov Collaborator(s): Jared Carbone (Colorado School of Mines)

Overview

"Modeling age-cohort employment responses to a new environmental regulation"

Jared Carbone and Jonathon Becker

Past work funded by the Environmental Protection Agency

- How do employment responses to new environmental regulations differ across age cohorts and sectors?
- One (of many) modeling challenges:
 - How to capture possibilities for labor force transitions by demographic group?
- WiNDC has been developing features for distributional analysis
 - a key component of distributional analysis is how a household's jobs are impacted

Today's Discussion

- Determining benchmark transition rates
- CGE model calibration
- An example calibration using WiNDC blueNOTE
- A test counterfactual case:
 - 30% coal input tax
- Link to example code on github: <u>https://github.com/jonmbecker/ltran</u>

Determining Benchmark Transition Rates

Data: IPUMS Basic Monthly Census Population Survey (CPS)

- Tracks individuals:
 - 4 on -- 8 off -- 4 on
 - Maximum of 8 survey responses in a 16 month period
- Data points
 - Labor force status, employment status, age, industry, occupation, etc
- Transition flows estimated with a proportional estimation by tracking first and last observed industry by person

Provides benchmark shares of total population attributable to inter- and intraindustry worker flows

Example Transition Rates from CPS data

Population weighted:

Share of total population making the transition from origin sector (o) to destination sector (s)

Population weighted transition rate from origin (o) to destination (s) (%)

		Destination (5)										
		FFL	ELE	EIT	TRN	MFG	SRV	AOG	Sum(s,*)			
	FFL	0.33	0.01	0	0.01	0.01	0.02	0.07	0.45			
	ELE	0	0.18	0	0	0	0.01	0.04	0.23			
	EIT	0.01	0	0.75	0.01	0.09	0.06	0.19	1.11			
Origin (o)	TRN	0.01	0	0.01	1.83	0.05	0.2	0.44	2.54			
	MFG	0.01	0.01	0.1	0.05	4.1	0.4	0.96	5.63			
	SRV	0.02	0.02	0.07	0.21	0.42	28.19	4.94	33.87			
	AOG	0.08	0.04	0.2	0.51	1.03	5.73	48.58	56.17			
									100			

Dectination (s)

Benchmark transition rates:

Share of workers with initial experience in sector "o" who transition to sector "s"

Obtained by dividing each element of the population weighted matrix by the sum over "s"

Benchmark transition rate from origin (o) to destination (s) (%)

Origin (o)

(+)
n(s,*)
100
100
100
100
100
100
100

Calibrating benchmark labor flows in CGE (CET function)

$$LS_{r,o} = A \left(\sum_{s} \theta_{r,o,s}^{LT} * LD_{r,o,s}^{\rho_{r,o}^{LT}} \right)^{1/\rho_{r,o}^{LT}}, \quad \sigma_{r,o}^{LT} = 1/(\rho_{r,o}^{LT} - 1)$$

- $\theta_{r,o,s}^{LT}$ benchmark rate at which workers of type *o* transition to sector *s*
- $\sigma_{r,o}^{LT}$ elasticity of transformation across sectors

Solve system of linear equations b = Ax

SOLVE for benchmark supply of labor (*VFO*_{*r*,*o*}), GIVEN benchmark labor demand $(IdO_{r,s})$ and labor transition rates $(Itran_{r,o,s})$:

$$IdO_{r,s} = \sum_{o} \left[VFO_{r,o} * Itran_{r,o,s} \right]$$

such that demand for labor in region r of experience type o in sector s is:

$$Id0trn_{r,o,s} = VFO_{r,o} * Itran_{r,o,s}$$

where $Id_{0trn_{r,o,s}}$ enters the model.

WiNDC Toy: Create placeholder transition data

* set o used for origin sector alias(s,o,oo); 785 C:\Usens\ihee

parameter lshr(r,o,s) labor transition rate from origin (o) to destination sector (s); parameter numberl(r,o,s) randomization of transition rates; parameter popr(r,o) household disagg share by o;

```
* Random number for toy transition rates
numberl(r,o,s)$ld0(r,s) = uniform(0.9,1.1);
* Rescale according to the size of sectoral labor demand
numberl(r,o,s)$(ld0(r,s)) = numberl(r,o,s)*ld0(r,s)/sum((s.local),ld0(r,s));
```

* Assume 75% same sector and distribute non same sector across remaining 25%
loop((r,o),
lshr(r,o,s)\$(not sameas(o,s)) =

0.25*numberl(r,o,s)\$(not sameas(o,s))/sum(s.local,numberl(r,o,s)\$(not sameas(o,s)));

) 🚁 👘

lshr(r, o, s) (sameas(o, s)) = 0.75;

destination (s)												
census		con	trn	oil	col	ele	eint	omnf	osrv	roe	gas	cru
ESC	con	75.00%	0.76%	0.13%	0.03%	0.19%	4.91%	0.94%	11.61%	6.41%	0.01%	0.01%
	trn	1.38%	75.00%	0.12%	0.03%	0.19%	5.04%	0.96%	11.21%	6.05%	0.01%	0.02%
	oil	1.20%	0.69%	75.00%	0.03%	0.15%	4.72%	0.80%	11.22%	6.15%	0.01%	0.01%
	col	1.43%	0.70%	0.12%	75.00%	0.18%	4.43%	0.90%	10.83%	6.38%	0.01%	0.02%
origin (o)	ele	1.26%	0.71%	0.11%	0.03%	75.00%	4.36%	0.91%	11.37%	6.22%	0.01%	0.01%
	eint	1.55%	0.88%	0.17%	0.04%	0.20%	75.00%	1.12%	12.93%	8.07%	0.01%	0.02%
	omnf	1.26%	0.64%	0.12%	0.03%	0.17%	4.88%	75.00%	11.86%	6.01%	0.01%	0.02%
	osrv	2.51%	1.27%	0.22%	0.05%	0.29%	7.41%	1.50%	75.00%	11.71%	0.02%	0.03%
	roe	1.61%	0.88%	0.15%	0.04%	0.23%	6.02%	1.00%	15.04%	75.00%	0.01%	0.02%
	gas	1.39%	0.68%	0.11%	0.03%	0.17%	4.78%	0.84%	10.85%	6.13%	75.00%	0.01%
	cru	1.38%	0.71%	0.13%	0.03%	0.17%	4.99%	0.86%	10.06%	6.65%	0.01%	75.00%

WiNDC Toy: Calibrate benchmark labor demand

```
Solve for benchmark labor supply in origin sector o using transition rate and labor demand
variables
               labor supply in origin sector o
    VFO(r,o)
               dummy
    MIN
equations
    main(r,s)
    dummy
main(r,s).. 1d0(r,s) = = sum(o, VFO(r,o)*1shr(r,o,s));
            MN = e = 0;
dummy..
model getvfo /main, dummy/;
MN.1 = 0;
VFO.lo(r,o) = 0;
solve getvfo minimizing MN using lp;
* used to disaggregate househols
parameter oshr(r,o) share of origin sector o in region r;
oshr(r,o) = VF0.1(r,o)/sum((0.local),VF0.1(r,o));
popr(r, o) = oshr(r, o);
* Origin specific labor demand enters model to inform supply and demand
parameter 1d0 o(r,o,s) origin specific labor demand;
1d0 o(r,o,s) = VFO.1(r,o)*lshr(r,o,s);
```

WiNDC Toy: Create placeholder household disaggregation

```
Preprocessing for household disaggregation by o
parameter bmk trev(r) benchmark tax revenues;
bmk trev(r) = sum((s,g)$y_(r,s), ty0(r,s) * ys0(r,s,g))
    + sum((g)$a (r,g), ta0(r,g)*a0(r,g) + tm0(r,g)*m0(r,g));
parameter tpo(r,o) benchmark transfers;
tpo(r, o) = (c0(r) - (
    sum(g, yh0(r, g))
    + bopdef0(r)
    + hhadj(r)
   - sum(g, i0(r, g))
   + sum(s,1d0(r,s))
    + sum(s,kd0(r,s))
    ))*popr(r,o)
parameter gov0 government deficit;
gov0 = sum(r, sum(g, g0(r, g)) + sum(o, tpo(r, o)) - bmk trev(r));
```

WiNDC Toy: Modify the WiNDC model

New/updated model variables

\$sectors:

LS(r,o) \$popr(r,o) ! Labor Supply

C(r,o)\$popr(r,o) ! Aggregate final demand

\$commodities:

PC(r,o)\$popr(r,o)	Consumer price index
PL(r,o,s)\$ld0_o(r,o,s)	Wage
PELL(r,o) \$popr(r,o)	Opportunity cost of labo

\$consumer:

RA(r,o)\$popr(r,o)	Representative	agent
GOVT	Government	

\$auxiliary:

TRANS

! Transfers

WiNDC Toy: Modify the WiNDC model

\$prc	d:Y(r,s)\$y_(r,s)	s:0 va:1
	o:PY(r,g)	q:(ys0(r,s,g)*(1-tfp(r,s))) a:GOVT t:ty(r,s) p:(1-ty0(r,s))
	i:PA(r,g)	q:(id0(r,g,s)*(l-aeeir(r,g)))
	i:PK(r,s)	q:kd0(r,s) va:
	i:PL(r,o,s)	q:1d0_0(r,0,s) va:
\$pro	d:LS(r,o)\$popr(1	:,0) t:1
	o:PL(r,o,s)	q:1d0_0(r,0,s)
	i:PELL(r,o)	q:(sum(s,ld0_o(r,o,s)))
\$pro	d:C(r,o)\$popr(r,	o) s:l
	o:PC(r,o)	q:(c0(r)*popr(r,o))
	i:PA(r,g)	q:(cd0(r,g)*popr(r,o))
\$dem	and:RA(r,o)\$popi	:(r,o)
	d:PC(r,o)	q:(c0(r)*popr(r,o))
lb	e:PY(r,g)	q:(yh0(r,g)*popr(r,o))
op	e:PFX	q:((bopdef0(r) + hhadj(r))*popr(r,o))
	e:PA(r,g)	q: (-(i0(r,g))*popr(r,o))
	e:PELL(r,o)	q:((sum((s,o.local),ld0_o(r,o,s)))*popr(r,o))
	e:PK(r,s)	q: (kd0(r,s)*popr(r,o))
	e:PFX	q:tpo(r,o) r:TRANS

30% coal input tax

% Differences		destination (s)										
<u>% Differences:</u>		con	trn	oil	col	ele	eint	omnf	osrv	roe	gas	cru
The coal input tax leads workers with	con	0.00	0.00	0.01	-1.85	-2.69	0.00	0.02	0.02	-0.01	-0.04	0.00
experience in the coal and electricity	trn	0.00	0.00	0.01	-1.85	-2.56	0.00	0.02	0.02	0.00	-0.03	0.01
experience in the coar and electricity	oil	0.00	-0.01	0.00	-1.88	-2.87	-0.01	0.01	0.01	-0.01	-0.04	0.00
sectors to transition away towards other	col	1.41	1.41	1.44	-0.47	-2.18	1.44	1.42	1.42	1.39	1.32	1.38
industries	origin (o) ele	2.02	1.97	2.16	0.77	-0.67	2.05	1.68	1.94	2.08	2.36	2.22
Industries	eint	0.00	0.00	0.02	-1.92	-2.72	0.00	0.02	0.02	0.00	-0.03	0.01
	omn	f -0.01	-0.01	0.00	-1.84	-2.16	-0.01	0.01	0.00	-0.02	-0.05	0.00
Workers who were transitioning	osrv	-0.01	-0.01	0.00	-1.87	-2.25	-0.01	0.01	0.01	-0.01	-0.04	0.00
towards and algorithminity now	roe	0.01	0.00	0.02	-1.82	-2.84	0.00	0.02	0.02	0.00	-0.03	0.01
towards coal and electricity, now	gas	0.04	0.03	0.04	-1.76	-3.16	0.03	0.05	0.05	0.03	-0.01	0.04
transition less	cru	0.01	-0.01	0.01	-1.80	-2.90	0.00	0.01	0.01	-0.01	-0.04	0.00

Labor Transitions -- 30% coal good input tax -- % difference from BMK labor flows

Labor transitions -- 30% coal good input tax -- raw difference from BMK labor flows

Raw Differences:

Coal and electricity workers transition into other industries

Service (osrv) sector workers who were transitioning to the electricity and coal sectors are more likely to stay put

		destination (s)												
		con	trn	oil	col	ele	eint	omnf	osrv	roe	gas	cru		
	con	0.0028	-0.0001	0.0000	-0.0013	-0.0127	0.0015	0.0009	0.0097	-0.0011	-0.0001	0.0000		
	trn	0.0001	-0.0003	0.0000	-0.0004	-0.0038	0.0006	0.0003	0.0036	-0.0002	0.0000	0.0000		
	oil	0.0000	0.0000	0.0006	-0.0001	-0.0009	0.0000	0.0000	0.0004	-0.0001	0.0000	0.0000		
	col	0.0009	0.0003	0.0001	-0.0142	-0.0001	0.0017	0.0006	0.0074	0.0032	0.0000	0.0000		
origin (o)	ele	0.0084	0.0031	0.0007	0.0000	-0.1423	0.0195	0.0053	0.0718	0.0304	0.0002	0.0003		
	eint	-0.0008	-0.0006	0.0000	-0.0027	-0.0345	0.0282	0.0012	0.0140	-0.0054	-0.0001	0.0000		
	omnf	-0.0007	-0.0003	0.0000	-0.0008	-0.0074	-0.0002	0.0104	0.0020	-0.0032	-0.0001	0.0000		
	osrv	-0.0141	-0.0073	0.0002	-0.0294	-0.2865	0.0147	0.0104	0.3885	-0.0806	-0.0012	0.0000		
	roe	0.0017	0.0001	0.0003	-0.0060	-0.0594	0.0085	0.0050	0.0572	-0.0085	-0.0002	0.0001		
	gas	0.0000	0.0000	0.0000	0.0000	-0.0003	0.0001	0.0001	0.0004	0.0001	-0.0004	0.0000		
	cru	0.0000	0.0000	0.0000	0.0000	-0.0004	0.0000	0.0000	0.0002	0.0000	0.0000	0.0003		

Concluding Remarks / Caveats

- Labor transitions can be modeled in a static CGE model, such as WiNDC
- Extra model dimensions make calibration trickier
- Quality data is hard to get:
 - CPS data works but comes with some caveats in terms of sparseness
 - Disaggregating coal and gas extraction transitions from CPS an open issue
- A justifiable calibration relies on transformation elasticity estimates
 - A discrete choice model is being tested for determining this elasticity and transition rates (Jared Carbone)
- It could be difficult to justify the household disaggregation under some circumstances
- Unemployment and not in labor force transitions present a complication

References

Rutherford, T.F. and A. Schreiber (2019). "Tools for Open Source, Subnational CGE Modeling with an Illustrative Analysis of Carbon Leakage", Journal of Global Economic Analysis, Volume 4 (2019), No. 2, pp. 1-66. DOI: <u>http://dx.doi.org/10.21642/JGEA.040201AF</u>

Marten, A., Schreiber, A., and Wolverton, A. 2021. SAGE Model Documentation (2.0.1). U.S. Environmental Protection Agency: <u>https://www.epa.gov/environmental-economics/cge-</u> <u>modeling-regulatory-analysis</u>.

Thank you!

www.nrel.gov

Email: Jon.Becker@NREL.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Appendix

LABOR TRANSITION

