Constructing MEEDE Version 2

Structure and Parameterization of the Electricity Sector in a Computable General Equilibrium Framework

WiNDC Research Meeting: May 5, 2022

Andrew Schreiber, Jared Woollacott, Candise Henry, David Evans, Shane Weisberg, and Wade Davis

The views expressed throughout this presentation are those of the authors and don't necessarily represent the views/policies of the EPA.

Introduction

• EPA-OP/NCEE efforts for electricity sector representations

• SAB guidance

• Consideration of other electricity modeling options

MEEDE Version 2

01

Sources: what's included?

02

Outputs: what's provided?

03

Applications: how to use MEEDE?

Sources

Version 2

- Engineering
 - EIA: Forms 860, 923
- Environmental
- EPA: AMPD emissions data
- IPMv6: Pollution control cost data
- Economic
- NREL: ATB cost data
- FERC: Form 714 wholesale price data

Updates

- Historical and projected technology costs
- Historical fuel prices
- Hourly wholesale prices (FERC 714)

Coverage

- \circ 97% of grid generation (≥ 1 MW)
- Annual representation 2013-2019
- 14,347 EGU-level obs. (2019)
- 133 variables describing each unit
- $^{\circ}$ 38 fuel types ightarrow 15 fuel codes
- 18 prime movers (79% steam, 2019)
- 33 pollution control types
- $^{\circ}$ > 1,000 plant configurations

Outputs: Controls

- Unit engineering specs: EIA-923 ×
 EIA-860
- Merged to cost assumptions: ATB & IPMv6
- Generation cost = ATB capital –
 IPMv6 control costs

Pollution Controls

- Mix of change-in-process and endof-pipe controls
- Sources have multiple controls
- Costs are not historical, require coarse mapping
- ATB controls assumed

	Total Costs Excluding Fuel (MM 2019\$)					
Cost Component	Net Generation (in thou	isands of MWh)	Capital	Fixed O&M	Variable O&M	Total
Total system, excluding fuel	2506 MM/h controlled	4,120,300	85,094	56,171	15,428	156,693
Generation only	35% www.controlled,	4,120,300	80,008	52,770	9,428	142,206
Controls	79% are steam	1,422,334	5,086	3,401	5,999	14,486
SOX Controls		873,182		2,593	3,356	8,226
Limestone forced oxidation scrubb	er 9.2% of system costs ar	e ,225	1,344	1,985	2,443	5,172
Lime spray dryer scrubber	pollution controls	249,216	1,131	859	1,032	<mark>3,0</mark> 22
Dry sorbent injection		117,034	246	342	1,054	1,642
PM Controls		100	1,341	372	79	1,792
Electrostatic precipitator (cold side	57% of pollution contr	621,454	349	224	49	621
Fabric filter baghouse	costs are SO _X	414,560	977	171	38	1,185
Electrostatic precipitator (cold side	Electrostatic precipitator (cold side), with flue gas conditioning				11	144
Electrostatic precipitator (hot side)		91,291	235	53	9	298
Electrostatic precipitator (hot side)	with flue gas	<mark>11,185</mark>	107	8	1	117
NOX Controls		1,406,1 <mark>5</mark> 1	1,432	416	1,120	2,969
Selective catalytic reduction		875,431	1 <mark>,</mark> 325	307	966	2,599
Low-NOx burner (wall fired)		687,370	1,074	269	764	2,107
Low-NOx burner with advanced ov	erfire air (tangentially fired)	303,937	<mark>2</mark> 5	48	6	80
Low-NOx burner with overfire air (v	vall fired)	251,206	579	147	396	1,122
Selective noncatalytic reduction (flu	uidized bed)	18,208	21	3	53	77
Vertically fired		4,584	15	1	7	23
HG Control - Active Carbon Inject	tion	586,773	35	20	1,444	1,498

Outputs: Emissions

	Output	Criteria and	d Hazardous Air Po	1Wh)	Greenhouse Gases (tons CO2e/MWh)			
NERC	Net Generation (in thousands of MWh)	Sulfur Oxides	Nitrogen Oxides	Particulate Matter	Mercury	Carbon Dioxide	Nitrous Oxides	Methane
ASCC	MRO (northern plains)	0.013	0.038	0.010	0	72	1.97	1.06
HICC	and RFC (~NJ to Madison) highest	0.042	0.036	0.063	0	42	1.04	0.54
MRO	447,052	0.347	0.300	0.023	0	516	1.92	0.69
NPCC	231,593	0.011	0.046	0.001	0	208	0.18	0.11
RFC	918,960	0.269	0.217	0.023	0	463	1.60	0.77
SERC	1,354,551	MRO has	11% higher G	HG emission	s rate	430	1.29	0.71
TRE	414,237	but 29% hi	1.18	0.65				
WECC	738,088		1.17	0.63				
Total	4,120,300	0.209	0.196	0.022	0	423	1.33	0.67

Regions: ASCC = Alaska Systems Coordinating Council; HICC = Hawaiian Islands Coordinating Council; MRO = Midwest Reliability Organization; NPCC = Northeast Power Coordinating Council; RFC = ReliabilityFirst Corporation; SERC = Southeastern Electric Reliability Council; TRE = Texas Reliability Entity; WECC = Western Electricity Coordinating Council.

MEEDE vs. Public Utilities Data Liberation (PUDL) Data

- For CGE context:
 - MEEDE includes capital and O&M cost estimations for all generators (including solar, wind, other renewables) and their control techs (for fossil plants) using ATB and IPM data, while PUDL only includes costs for steam, gas turbine, and hydro generators (because it uses FERC Form 1 which doesn't require the same level of reporting for solar, wind, and other renewables)
 - Because PUDL relies on FERC Form 1, does not allow for projections of future costs. Since MEEDE is integrated with ATB, MEEDE can seamlessly use ATB cost projections.
 - MEEDE includes wholesale price estimates from FERC assigned to each generator, which PUDL does not include
- MEEDE fills in missing data using regional averages so that aggregated data are not skewed, and PUDL does not make assumptions about missing data.
- The format of MEEDE (with plant ID-prime mover-fuel type-boiler ID mappings) makes it easy to aggregate up to higher levels relevant to CGE modeling (e.g., capex by all coal, NG, or oil).

Applications: SAM Integration

1. Form priors

- a. Aggregate MEEDE to 8 technologies
- b. ID labor from QCEW
- c. Assign materials total and distribute using IMPLAN

2. Rebalance SAM

- a. Swap SAM data with priors
- b. Form MP with SAM and macro constraints, variable bounds
- c. Fix generation shares, energy efficiencies, and zeroes
- d. Solve MP using PATHNLP (cross entropy, least squares) or DNLP (Huber)

Input Cost	Generation Value	T&D Value
Capital	MEEDE	IMPLAN - MEEDE
Labor	QCEW	QCEW
Energy	MEEDE NOM - FOM - F IN - OCFN	IMPLAN - MEEDE (ex. coal = 0)
Materials	VOM + FOM + Fuel Margins - QCEW	IMPLAN - MEEDE
Given:	$\mathbb{S}^u = \{ \tilde{v}^u_{fj}, \tilde{x}^u_{ij}, \tilde{Y}^u_{rj}, \tilde{d}^u_{ig}, \tilde{D}^u_{rg}, \tilde{Y}^u_r \}$	Candidate intensive values
Find:	$\mathbb{S}^{b} = \{ \tilde{v}_{fi}^{b}, \tilde{x}_{ii}^{b}, \tilde{Y}_{ri}^{b}, \tilde{d}_{ia}^{b}, \tilde{D}_{ra}^{b}, \tilde{Y}_{r}^{b} \}$	Corresponding solution values
Minimizing:	$\sum_{v,r,u,d} (\mathbb{S}^u - \mathbb{S}^b)^2$	Sum of squared deviations.
0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · · · · · · · · · · · · · · · · · ·
	$\sum \mathbb{S}^{u} \mathbb{I}_{p}(\mathbb{S}^{b}/\mathbb{S}^{u})$	Kullback-Leibler Divergence, OR
	$\Delta_{v,x,y,dS}$ III(S/S)	Huber loss function
	$\Sigma = \mathbb{S}^{u} \mathfrak{O} \rho (\mathbb{S}^{b} / \mathbb{S}^{u} = 1)$	$\mathbb{S}^b/\mathbb{S}^u - 1 > \theta$
	$\sum_{v,x,y,d} \sum_{v,x,y,d} \sum_{v$	$-\gamma < \mathbb{S}^b/\mathbb{S}^u - 1 < \theta$
	$\sum_{v,x,y,d} \sum_{(a,b)} \sum_$	$\mathbb{S}^{b}/\mathbb{S}^{u} - 1 \leq -\gamma$
	$\Sigma_{v,x,y,d} \mathbb{S}^{-} 2\gamma (1-\gamma) \mathrm{III}(\mathbb{S}^{-}/\mathbb{S}^{-})$	
Subject to:	Founding 5	Row-column balance
Subject to.	Equation 5	Income balance
	Equation 6	Totala
	Equation 7	Trada balanca
	Equation 8	Trade Datance

Applications: SAM Integration Results

	GT&D	Data	Capital	Labor	Energy	Materials	Output
T&D priors, held weakly (no bottom-	THE D	Drior	19.2	26.4	0	447.7	752.4
up data), travel more.		Solution	21.1	25.3	19	656.3	945.2
Total output double counts gen; i.e.,	Coal	Prior	32.1	5.3	23.7	34.6	95.7
gen plus (gen +T&D)		Solution	28.6	5.1	21.4	31.3	86.4
	Gas	Prior	32.6	3	30.1	18.5	84.2
		Solution	29.5	2.9	26.9	16.6	76
K&L don't travel much	nyaro	Prior	2.6	1.8	0	5.5	9.9
		Solution	2.6	1.6	0	5.7	9.9
	Nuclear	Prior	18.6	2	0	13.8	34.5
		normore	17.7	2.2	0	13.2	33.1
Energy efficiencies fixed	Oil	Prior	2.4	0.4	1.3	1.8	6
		Solution	2.1	0.5	1.3	1.7	5.5
	Other	Prior	5.8	0.3	0	3. 8	9.8
		solution	5.4	0.3	0	3.4	9
Gen outputs don't travel much	Solar	Prior	3.8	0.3	0	0.3	4.4
		Solution	3.6	0.3	0	0.3	4.2
	Wind	Prior	12.1	0.4	0	3.5	16
		Solution	11.6	0.4	0	3.4	15.3

Applications: PE Modeling

• ACCESS (Accessible Capacity and Cost optimization Electric Sector Simulation) Model

- Reduced form partial equilibrium model representing the electricity sector
- Developed in Python with Gurobi solver
- Internal R&D effort at RTI for now
- Testing state-level simulations for an environment NGO
- Benefits of a reduced form modeling approach
 - Allows for Monte Carlo simulations of a range of scenarios
 - Users have more flexibility and control over input assumptions; e.g.,
 - Demand profiles at various temporal resolutions,
 - Technology specifications such as capacity factors and ramp rates,
 - Regionality and trade assumptions
 - Can be run with hourly resolution to capture renewable resource variability

Electricity Structure in CGE

01

Functional forms: estimating and simulating dispatch 02

Bottom-up elasticities: how reliable are they? 03

CGE Structure: do we need elasticities?

Functional Forms: Prod.

- CGE models often highly stylized
- Not all separate T&D
- Wide range of elasticity assumptions
- Forms: CES, CRESH, Translog, ACES

Model	Base	Peak	Gen	Gen-	VA – E	Other	No.
				TD			Tech.
ADAGE							
(Yongxia Cai et al., 2021)			0.3		0.4		Small
ARTIMAS							
(Woollacott, 2020)	2	2	0.4	0	No	No	Large
ENV-Linkages							
(Jean Château et al., 2014)				5	N/A		
EPPA							
(Paltsev et al., 2005)			00	>0			Small
GEM-E3							
(Capros et al., 2013)			0	0			
GTAP-E-Power							
(Jeffrey Peters, 2016)	1.39*	0.47*	0	0	Yes	?	Varies
GTEM-CTEM							
(Yiyong Cai & Arora, 2015)				CRESH	0	Yes	
IGEM							
(Goettle et al., 2007)					Yes		Small
Phoenix							
(Sue Wing et al., 2011)	4	4	1	0.7			Small
USREP							
(Yuan et al., 2019)	8	00	Varies				Small
* Represents empirically esti	mated val	ues.					

(2014) have capital-energy and interfuel substitution rather than substituting technologies.

Functional Forms: Estimation

- Elasticity estimates: vary widely across regions
- Common estimation forms: OLS, translog, linear logit
- Recent papers: Linn & Muehlenbachs (2018), Fell & Kaffine (2018), Knittel et al. (2019)

 $\% \Delta SO_2$ rate

(0.10)

-1.08

(0.19)

(0.39)

-1.00

(0.71)

(0.04)

-0.14

(0.07)

				VVLC		-0.14	-0.	.05	-0.04
				US		-0.11**	-0.	.29**	-1.26**
				Note	tically signif	ignificant			
Table 4 Predicted response to a 10 percent	ent decrease	in natural gas pr	ice.			(Linn &	Muehlen	bachs, 201	8; Table 4)
	All	FRCC	MRO	NPCC	RFC	SERC	SPP	TRE	WECC
%Gas Generation in 2008	29.67	63.01	4.16	71.33	9.10	18.81	30.64	55.77	49.95
% Δ Peak Price	-7.67	-18.64	-3.72	-8.02	-5.01	-7.92	-7.53	-11.17	-9.74
	(0.31)	(2.50)	(0.72)	(0.59)	(0.39)	(0.34)	(0.80)	(0.51)	(0.50)
% Δ Off-Peak Price	-6.72	-10.54	-1.31	-7.59	-3.07	-5.08	-5.38	-11.76	-9.85
	(0.51)	(2.17)	(1.37)	(0.73)	(0.29)	(0.56)	(1.12)	(0.35)	(0.88)
% Δ Share Gas Generation	2.90	0.50	4.10	0.45	5.31	4.54	4.82	-0.80	1.08
	(0.43)	(0.68)	(1.42)	(1.49)	(1.05)	(1.24)	(2.34)	(2.10)	(0.49)
$\% \Delta CO_2$ rate	-0.59	-0.33	-0.07	-0.33	-0.25	-0.48	-0.98	0.37	-0.47
_	(0.20)	(0.98)	(0.07)	(2.86)	(0.16)	(0.33)	(1.05)	(1.74)	(0.44)
% Δ NO _v rate	-0.89	-0.94	-0.13	-0.73	-0.28	-0.60	-1.08	0.82	-0.93

REGION

FRCC

MRO

NPCC

RFC

SERC

SPP

TRE

WECC

Coal

-0.53**

-0.23**

-0.18**

-0.22**

0.02

0.08

(0.17)

-0.82

(0.24)

(0.51)

-1.87

(0.64)

(0.96)

1.48

(1.54)

0 1/**

-0.11

Natural Gas

-0.46**

-0.21**

-0.60**

-0.41**

-0.02

0.02

0 05**

-0.31

Petroleum

-2.16**

-0.70**

-1.26**

-1.13**

-1.53**

-1.28**

-0.55*

-0.64**

(0.21)

-1.03

(0.44)

Notes: First row is the initial (2008) share of generation from natural gas. All remaining rows are the predicted percent change in outcome variables from their 2008 levels after a 10% decrease in natural gas price. "% Δ Share Gas Generation" is the percent change in the share of gas-fired generation. Emissions rates are emissions per generation. Bootstrapped standard errors in parentheses.

(0.09)

-0.34

(0.16)

(1.07)

-0.96

(2.37)

Bottom-Up Elasticities: Theory

- Linn and Muehlenbachs (2018) motivate regional heterogeneity with stylized supply curve analysis (top)
- Worked example (bottom) shows how elasticities change with increased VRE and gas capacity

Bottom-Up Elasticities: Discrete Approximation

- Supply curves built from MEEDE data
- Considerable regional variation consistent with lit.
- Not all cross, but annual average distorts hourly reality
- Gas crosses on steep part of coal supply → small elasticity

Bottom-Up Elasticities: Monte Carlo Simulation

- Simple dispatch model replicates MEEDE, gives ~linear behavior
- More complex model may need more sophisticated estimation form
- Elasticity not constant given linearity
- Results may differ significantly with a more complex PE model
- Implied elasticities vary widely by region as in empirical work

Bottom-Up Elasticities: Theory

 γ_{gh} :

 v_q :

 c_{gh}^m :

- What does a 'bottom-up elasticity' look like? Is it well-defined?
- Not well defined for ZMC technologies (i.e., $c_{gh}^m = 0$)
- Not constant across or within regions

General Equilibrium Structure

Research Needs

- Develop and test CGE formulation
 - Develop capacity factor specification
 - Vary time slice representation
- Robust Monte Carlo PE Simulation \rightarrow response surface for CGE validation
 - Build up toy model
 - Multi-model comparisons