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Introduction
• EPA-OP/NCEE efforts for electricity sector representations

• SAB guidance

• Consideration of other electricity modeling options



MEEDE Version 2

Sources: what’s 
included?

01
Outputs: what’s 
provided?

02
Applications: how 
to use MEEDE?

03



Sources

•Engineering
•EIA: Forms 860, 923

•Environmental
•EPA: AMPD emissions data
•IPMv6: Pollution control cost data

•Economic
•NREL: ATB cost data
•FERC: Form 714 wholesale price data

Version 2

•Historical and projected technology costs
•Historical fuel prices
•Hourly wholesale prices (FERC 714)

Updates

Coverage

◦ 97% of grid generation (≥ 1 MW)

◦ Annual representation 2013-2019

◦ 14,347 EGU-level obs. (2019)

◦ 133 variables describing each unit

◦ 38 fuel types à 15 fuel codes

◦ 18 prime movers (79% steam, 2019)

◦ 33 pollution control types

◦ > 1,000 plant configurations



Sources
◦ EIA-923: Activity levels

◦ EIA-860: Unit attributes

Coverage detail varies on
• Plant (PID)
• Prime mover (PM)
• Fuel type (FT)
• Boiler (BID)
• Generator (GID)
• Pollution control units (FGP_ID, 

FGD_ID, NOX_ID, HG_ID) 

16% of plants are served by 
boilers

Mappings can be many-to-many –
requires apportioning 

assumptions
Flue heights useful for 
pollutant fate and 
transport

Boiler cooling equipment 
useful for water quality and 
quantity



Outputs: Controls

9.2% of system costs are 
pollution controls

Pollution Controls
• Mix of change-in-process and end-

of-pipe controls

• Sources have multiple controls
• Costs are not historical, require 

coarse mapping
• ATB controls assumed

57% of pollution control 
costs are SOX

◦ Unit engineering specs: EIA-923 ×
EIA-860 

◦ Merged to cost assumptions:  ATB 

& IPMv6

◦ Generation cost = ATB capital –

IPMv6 control costs

35% MWh controlled, 
79% are steam



Outputs: Emissions

Regions: ASCC = Alaska Systems Coordinating Council; HICC = Hawaiian Islands Coordinating Council; MRO = Midwest Reliability 
Organization; NPCC = Northeast Power Coordinating Council; RFC = ReliabilityFirst Corporation; SERC = Southeastern Electric 
Reliability Council; TRE = Texas Reliability Entity; WECC = Western Electricity Coordinating Council.

MRO has 11% higher GHG emissions rate 
but 29% higher SOx and 38% higher NOx à

fewer controls

MRO (northern plains) 
and RFC (~NJ to 

Madison) highest



MEEDE vs. Public Utilities Data Liberation (PUDL) 
Data

• For CGE context:
o MEEDE includes capital and O&M cost estimations for all generators (including solar, wind, other renewables) 

and their control techs (for fossil plants) using ATB and IPM data, while PUDL only includes costs for steam, gas 
turbine, and hydro generators (because it uses FERC Form 1 which doesn’t require the same level of reporting 
for solar, wind, and other renewables)

o Because PUDL relies on FERC Form 1, does not allow for projections of future costs. Since MEEDE is integrated 
with ATB, MEEDE can seamlessly use ATB cost projections.

o MEEDE includes wholesale price estimates from FERC assigned to each generator, which PUDL does not 
include

• MEEDE fills in missing data using regional averages so that aggregated data are not skewed, and PUDL does not 

make assumptions about missing data.

• The format of MEEDE (with plant ID-prime mover-fuel type-boiler ID mappings) makes it easy to aggregate up to 

higher levels relevant to CGE modeling (e.g., capex by all coal, NG, or oil).



Applications: SAM Integration

1. Form priors

a. Aggregate MEEDE to 8 technologies

b. ID labor from QCEW

c. Assign materials total and distribute 

using IMPLAN

2. Rebalance SAM

a. Swap SAM data with priors

b. Form MP with SAM and macro 

constraints, variable bounds

c. Fix generation shares, energy 

efficiencies, and zeroes

d. Solve MP using PATHNLP (cross 

entropy, least squares) or DNLP 

(Huber)



Applications: SAM Integration Results

T&D priors, held weakly (no bottom-
up data), travel more.

Total output double counts gen; i.e., 
gen plus (gen +T&D)

Gen outputs don’t travel much

K&L don’t travel much

Energy efficiencies fixed



◦ ACCESS (Accessible Capacity and Cost optimization Electric Sector Simulation) Model

◦ Reduced form partial equilibrium model representing the electricity sector

◦ Developed in Python with Gurobi solver

◦ Internal R&D effort at RTI for now

◦ Testing state-level simulations for an environment NGO

◦ Benefits of a reduced form modeling approach

◦ Allows for Monte Carlo simulations of a range of scenarios

◦ Users have more flexibility and control over input assumptions; e.g., 

◦ Demand profiles at various temporal resolutions, 

◦ Technology specifications such as capacity factors and ramp rates, 

◦ Regionality and  trade assumptions

◦ Can be run with hourly resolution to capture renewable resource variability

Applications: PE Modeling



Electricity Structure in CGE

Functional forms:
estimating and 
simulating 
dispatch

01
Bottom-up 
elasticities: how 
reliable are they?

02
CGE Structure: do 
we need 
elasticities?

03



Model Base Peak Gen Gen-
TD

VA – E Other No. 
Tech.

ADAGE

(Yongxia Cai et al., 2021) -- -- 0.3 0.4 Small
ARTIMAS

(Woollacott, 2020) 2 2 0.4 0 No No Large
ENV-Linkages

(Jean Château et al., 2014) -- -- 5 N/A
EPPA

(Paltsev et al., 2005)
∞

>0 Small
GEM-E3

(Capros et al., 2013) -- -- 0 0
GTAP-E-Power

(Jeffrey Peters, 2016) 1.39* 0.47* 0 0 Yes ? Varies
GTEM-CTEM

(Yiyong Cai & Arora, 2015) -- -- CRESH 0 Yes
IGEM

(Goettle et al., 2007) -- -- -- -- Yes Small
Phoenix

(Sue Wing et al., 2011) 4 4 1 0.7 Small
USREP

(Yuan et al., 2019)
∞ ∞

Varies Small
* Represents empirically estimated values.

Functional Forms: Prod.

◦ CGE models often highly stylized

◦ Not all separate T&D

◦ Wide range of elasticity assumptions

◦ Forms: CES, CRESH, Translog, ACES

(Peters, 2016)



Functional Forms: Estimation
◦ Elasticity estimates: vary widely across regions

◦ Common estimation forms: OLS, translog, linear logit

◦ Recent papers: Linn & Muehlenbachs (2018), Fell & Kaffine
(2018), Knittel et al. (2019)

(EIA, 2012; Table 3)

(Linn & Muehlenbachs, 2018; Table 4)



Bottom-Up Elasticities: Theory
◦ Linn and Muehlenbachs (2018) motivate regional 

heterogeneity with stylized supply curve analysis 

(top)

◦ Worked example (bottom) shows how elasticities 

change with increased VRE and gas capacity

(Linn & Muehlenbachs, 2018; Table 4)

Px shock Px shock
+ VRE

Px shock
+ VRE  
+ Gas K



Bottom-Up Elasticities: Discrete Approximation

◦ Supply curves built from MEEDE 
data

◦ Considerable regional variation 
consistent with lit.

◦ Not all cross, but annual average 
distorts hourly reality

◦ Gas crosses on steep part of coal 
supply à small elasticity

10th Percentile
30th Percentile
70th Percentile
90th Percentile

Gas Price Shift



MEEDE
PE Model

Bottom-Up Elasticities: Monte Carlo Simulation
◦ Simple dispatch model replicates MEEDE, 

gives ~linear behavior 

◦ More complex model may need more 
sophisticated estimation form

◦ Elasticity not constant given linearity

◦ Results may differ significantly with a more 
complex PE model

◦ Implied elasticities vary widely by region 
as in empirical work



Bottom-Up Elasticities: Theory

◦ What does a ‘bottom-up elasticity’ 

look like? Is it well-defined?

◦ Not well defined for ZMC 

technologies (i.e.,  !"#
$ = 0)

◦ Not constant across or within 

regions
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General Equilibrium Structure

rks.l(et,t,ts) = pref(t) * hours(et,ts) / sum(ts_, hours(et,ts_));

Generate in ts given capacity 
factor hours(et,ts) / card(ts)

Capacity available in all time 
slices earning rk(et,t) = sum(ts, 

rks(et,t,ts))

Invest in higher-rent  capacity 
that survives on schedule lambda

Demand fixed load profile from 
all technologies



Research Needs
• Develop and test CGE formulation
• Develop capacity factor specification
• Vary time slice representation

• Robust Monte Carlo PE Simulation à response surface for CGE validation
• Build up toy model
• Multi-model comparisons


